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Characteristics of Tsunami-Affected Areas in
Moderate-Resolution Satellite Images
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Abstract—The massive 2004 Indian Ocean tsunami caused vast
devastation along the coastal areas in countries around the Indian
Ocean rim. Satellite images of various spatial resolutions could
quickly capture the affected areas and were used for emergency
response after the catastrophe occurred. To figure out the extent of
affected areas, moderate-resolution satellites (e.g., Terra-ASTER)
images are more suitable than high-resolution satellites (e.g.,
Ikonos) images. Basically, tsunami-affected areas can be observed
and detected through land cover changes. Based on the nature of
the tsunami attack, we chose the normalized difference vegetation
index, soil index, and water index as indicators to help detect
changes. This paper first investigates the fluctuations of these
indexes and their differences using ASTER images of southern
Thailand. The investigation is carried out in two cases: one using
only the data acquired after the tsunami, and the other using
both data acquired before and after the tsunami. Consequently,
the thresholds of index differences are set up for the detection of
tsunami-affected areas. In addition, since landform is a significant
factor to determine the extent of tsunami runup, Shuttle Radar
Topography Mission data are employed to perform geomorpho-
logical classification and to assess its relationship with the tsunami-
affected areas.

Index Terms—Landform classification, normalized difference
vegetation index (NDVI), Terra-ASTER, the 2004 Indian Ocean
tsunami, tsunami runup.

I. INTRODUCTION

RAPID DECISION making and information gathering are
crucial in the response after the occurrence of a disaster.

As the damage spreads extensively, information gathering be-
comes more difficult. Fortunately, remote sensing is a capable
technique to capture the damage information over a large
area. In the past, satellite sensors provided rather coarse spa-
tial resolution images. Hence, aerial photographs were mainly
employed in gathering detailed information, like the damage
caused to buildings due to an earthquake [1]. However, the
recent very high resolution satellite images, like QuickBird
or Ikonos, can be used in performing the same task [2]. It
is also noted that the spectral and temporal resolutions of
moderate-resolution satellite sensors have also been improved.
For instance, Terra-ASTER sensor provides 14-channel data
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and most sensors can capture a target area within a few days
after a catastrophe has occurred. These advances strengthen
their capability in postdisaster response.

Immediately after the 2004 Indian Ocean tsunami, a large
volume of remotely sensed images before and after the tsunami
were delivered under the International Charter “Space and
Major Disasters” [3], and they were effectively used in rescue
and rehabilitation actions. In most cases, analysts and decision
makers prefer very high resolution satellite images like Ikonos
and QuickBird. In fact, it has been demonstrated that the
damage of even individual buildings could be identified from
those images although the building damage level judged from
vertical images tends to be relatively lower than actual damage
levels [4]. The damage level due to this tsunami in Sri Lanka
has been assessed using those data [5]. Alternatively, moderate-
resolution satellite (e.g., Terra-ASTER) images are necessary to
assess the extensive damage distribution because of their wider
coverage. It is particularly helpful in emergency management
such as relief logistics. It is noted that the utilization of both
resolution images for the detection of tsunami-affected areas
has been proposed [6].

As a matter of fact, tsunamis attack coastal areas and wash
away vegetation and other structures along the coastline. The
damage extent depends on the mechanism of an earthquake,
which triggers tsunamis, and also on the landform of coastal
areas. Due to tsunamis, soil is more exposed as vegetation is
vegetation index (NDVI), soil index (NDSI), and water index
(NDWI) are rigorously investigated. Second, the thresholds to
divide tsunami-affected and nonaffected areas are set up. The
effects of clouds/shadows and seasonal/man-made changes are
also investigated. Landform is also taken into account to sup-
plement the spectral reflectance. Landform is classified using
Shuttle Radar Topography Mission (SRTM) data, which is also
at a reasonable spatial resolution. Consequently, it is possible
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Fig. 2. Flowchart of the study.

Fig. 3. Results of classification.

III. ANALYSIS OF DATA ACQUIRED

OVER SOUTHERN THAILAND

A. Correction of Shadow and Cloud Areas

Completely cloud-free remote sensing images are not often
available, especially in tropical or humid climates. However, a
method to reduce the effect of clouds and shadows has rarely
been studied. Song and Civco [14] conducted a knowledge-
based approach for reducing the effects of clouds and shadows
using two multitemporal images. Since our objective is to
develop a quick detection method, we introduce a simple idea to
correct cloud and shadow areas from only one image as follows.

First, ASTER images before and after the disaster are clas-
sified by a maximum-likelihood classifier using the visible and
near-infrared bands into sea, cloud, shadow, water, bare/urban,
and others, named earth, as shown in Fig. 3. Second, the cloud
and shadow pixels are corrected following the method stated
below.

Scanning from the top left to the bottom right of an image is
carried out to find a cloud pixel. At this found cloud pixel, the
mean value of its neighboring pixels (within a 5 × 5 window)

Fig. 4. Example of cloud and shadow correction.

that are not classified as cloud, shadow or water is calculated.
The window size was determined after some trials. Then, the
pixel is replaced by that mean value. This pixel shall be used for
the calculation of mean values of cloud pixels found hereafter.
The computation of the mean value and the replacement are
repeated to the next found cloud pixel until all the cloud pixels
have been replaced. In this method, cloud pixels are reduced
from the upper left corner to the bottom right corner in each
cloud covered area, and hence, this method has a drawback that
the correction result is influenced by the position of the first
cloud pixel.

The correction of shadow pixel values is also carried out
in the similar manner. When a shadow pixel is found, the
major class of its neighboring pixels (within a 5 × 5 window),
which is thought to be the original class in the shadow pixel, is
determined. Then, the pixel is reassigned to this major class.
The replacement is repeated to all found shadow pixels in
the image. Subsequently, the mean value of each land cover
class on each spectral band is calculated in which separate
calculation is conducted for areas without and with shadow.
Finally, the ratios between shadow-free areas and shadow areas
are computed for each land cover class. Then, the value of a
shadow pixel is multiplied by the selected ratio depending on
its above-assigned class.

The correction processes for clouds and shadows are differ-
ent because for clouds, the correction is pure inference from the
surroundings while for shadows, the correction is amplifying
the reduced pixel values using the surroundings. An example
of the result of classification and correction is shown in Fig. 4.
The correction does not look very perfect but has a reasonable
level of accuracy to employ the result in the further steps. We
believe these corrections are necessary to fully utilize available
data as much as possible. Note that the accuracy of land cover
classification conducted before the correction needs to be high
to use surrounding data for the inference of pixel values of
cloud/shadow areas.

B. Computation of the Indexes

Following (1)–(3), the NDVI, NDSI, and NDWI were com-
puted as shown in Fig. 5. The greater the NDVI is, the more veg-
etation covers. It is also the case with the NDSI for soil and the
NDWI for water. Fig. 5 shows that, in general, NDVI decreases,
and NDSI and NDWI increase in the tsunami-affected areas.
These observations are based on the facts that the vegetation
was washed away or became dead/weakened, soil was exposed,
and the soil moisture was increased due to the tsunami.

In other words, the results demonstrate a clear difference in
the indexes for the affected areas before and after the disaster
and a difference between the affected areas and the other areas
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Fig. 5. Computed NDVI, NDSI, and NDWI for preevent and postevent ASTER images.

Fig. 6. Cumulative frequency distributions of NDVI, NDSI, and NDWI from the data one week after the tsunami.

Fig. 7. Comparison of cumulative frequency distributions of the indexes between one week and one month after the tsunami.

after the disaster. These differences could be good indicators of
tsunami inundation. More rigorous analysis on the characteris-
tics of the indexes is discussed in the following section.

C. Threshold Analysis

1) Using Only the Posttsunami Image: The first analysis is
to compare the characteristics of three indexes in the affected
areas and nonaffected areas using only a single postevent
image, and consequently, determine the thresholds for detection
of tsunami-affected areas. It might be applicable in the case no
preevent image exists.

The cumulative frequency distributions of NDVI, NDSI,
and NDWI in the affected areas and nonaffected areas are
plotted in Fig. 6. As a result, it is observed that there are
clear differences in the distributions between the two plots
for each index. It is possible to determine a value where the
difference between their cumulative frequency distributions

is maximized as a threshold to distinguish two classes. This
method gives the most probable value to divide two classes
in the Kolmogorov–Smirnov test [15]. Using this method, the
thresholds to identify affected areas are 0.53 for NDVI, −0.16
for NDSI, and −0.43 for NDWI. To summarize, the pixels
which have NDVI value less than the threshold, and NDSI and
NDWI values more than the thresholds are identified to belong
to tsunami-affected areas using only the postevent image.

Practically, vegetation is expected to recover after some time.
However, the NDVI varies depend on the season, as seen in
the nonaffected areas in Fig. 5. Moreover, the NDWI might
be influenced by the weather condition and the elapsed time
after the tsunami. A further analysis compares the cumulative
frequency distributions of the indexes between one week and
one month after the tsunami in Fig. 7. The distributions of
NDVI and NDSI show that vegetation was further weakened
one month after the tsunami. On the other hand, the NDWI
in “the affected areas” slightly decreased while the one in
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“non-affected areas” slightly increased. It implies that after
one month, water carried by the tsunami evaporated and soil
moisture in the tsunami-affected areas decreased.

To use these indexes in the detection of tsunami-affected
areas, their annual fluctuations should be evaluated beforehand.
The determined thresholds should be adjusted to reflect the
seasonal vegetation characteristics in the further study. Further-
more, it has to be ensured that indexes give clear differences
between affected areas and other areas. It seems that the alterna-
tive solution using the difference of these indexes between pre-
and postevent data as the indicators of the effects of tsunami
might be more reliable.
2) Using Both the Pretsunami and Posttsunami Images:

For moderate resolution satellite images like Terra-ASTER,
preevent images of a target area exist with high probability,
even though the acquired season is not the same. Hence, the
comparison of pre- and postevent images is considered to be
more robust than using only a postevent image. As mentioned
before, since the significant changes of the NDVI, NDSI, and
NDWI values in the tsunami-affected areas are seen in Fig. 5, it
might be possible to identify tsunami-affected areas by taking
the difference of the indexes computed from the preevent and
postevent images.

The image acquired on November 15, 2002 was used as the
preevent one and the image acquired on December 31, 2004
was used as the postevent one. It is obvious that using an image
of a year before is much simple and better for change detection
due to a tsunami. However, unfortunately, such images do not
exist in most cases, which is often the case in tropical regions
due to cloud cover.

First, the pixels with NDVI less than 0.61, which is 20 per-
centile of its cumulative frequency distribution in the affected
areas based on the preevent image, were excluded. In other
words, we focused on the pixels showing high possibility of
the existence of vegetation. The difference of NDVI between
the pre- and postevent images was computed only with the
pixels where NDVI is greater than 0.61 before the tsunami. For
the NDSI and NDWI indexes, on the contrary, only the pixels
where the indexes are less than −0.21 and −0.43, which are
80 percentile of their cumulative frequency distributions based
on the preevent image, were used.

Second, after a simple subtraction of the indexes between
the pre- and postevent images, the seasonal effect could be
evaluated. They were derived from the differences between the
average values in the nonaffected areas before and after the
tsunami. These differences are −0.093, 0.078, and 0.067 for
NDVI, NDSI, and NDWI, respectively. After eliminating the
seasonal effect, the indexes’ differences are illustrated in Fig. 8.
In the figure, white pixels were excluded from the following
process because they have less than 20 percentile value for
NDVI or more than 80 percentile value for NDSI or NDWI,
as stated above.

Fig. 8 shows rather big changes of the values in the tsunami-
affected areas. There are also obvious changes, especially for
NDVI and NDSI, in the nonaffected areas. In these areas,
NDVI decreased and NDSI increased. Visual inspection as the
one shown in Fig. 9 using Ikonos image shows that there was
the land use change (tree cutting). Another evidence for this

Fig. 8. Differences of the indexes between the pre- and postevent data.

Fig. 9. ASTER and Ikonos images of the area with a man-made land use
change. The area is the detail of the square in the upper part of Fig. 8.

observation is that these areas have straight boundaries, i.e.,
man made.

Subsequently, the distribution of the indexes’ differences
in the affected and nonaffected areas was calculated. The
cumulative frequency distributions of the time differences of
NDVI, NDSI, and NDWI in the affected and nonaffected areas
are plotted in Fig. 10. Similarly to the detection using only the
postevent image, the thresholds for detecting tsunami-affected
areas were determined. In summary, the pixels which have the
NDVI difference less than the threshold, and the NDSI and
NDWI differences more than the thresholds are identified as
tsunami-affected areas in tsunami damage detection based on
the pre- and postevent images.

D. Topographic Features and Landform Classification

To investigate the relationship between landform charac-
teristics and tsunami inundation, landform classification was
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Fig. 10. Cumulative frequency distributions of the differences of NDVI, NDSI, and NDWI.

Fig. 11. Topographic features and the landform classification result in the study area.

conducted in the study area based on the SRTM data. Fig. 11
shows the ASTER image of the study area acquired on
February 8, 2005 and topographic features, like an angle of
gradient and ridge or channel areas of the same area, derived
from the SRTM data. A landform classification result is also
shown in Fig. 11, which was obtained through a decision tree
method. In the reference [16], five categories of landform,
which are mountain, plateau, lowland, reclaimed land, and
natural levee, are suggested considering its use in the estimation
of site amplification factors and the accuracy of data used. As
tsunami inundation is assessed in this paper, we considered
reclaimed land and natural levee as a part of lowland and added
the threshold of height.

It is expected that these landform classification results de-
pend on the DEM used. It is obvious that small landform
variation within 90-m cell of SRTM-3 cannot be detected.

However, we used the SRTM data only for calculating the geo-
morphological parameters, and hence the limitation in accuracy
is not very significant.

First of all, “Sea” and “Cloud” were extracted visually from
the ASTER data. Next, the rest was classified into “High”
and “Low” areas based on the elevation of 10 m. Then, each
class was classified as follows. “Slope (High/Low)” is a pixel
with the gradient greater than 5◦. A pixel with the gradient
less than 5◦ is classified as “Plain (High/Low)” if it is not
in the ridge nor channel areas. “Ridge” and “Channel” were
assigned for the pixels whose gradient is greater than 1◦ and
whose absolute cross-sectional curvature is less than 0.1, using
a function in ENVI software. The summary of the classifica-
tion method is demonstrated in Fig. 12, where three branches
exist: i.e., “altitude,” “gradient,” and “the angle and direction
of slope.”
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Fig. 12. Decision tree for landform classification.

Fig. 13. Results of (left) the landform classification, (center) identified affected areas, and (right) Ikonos image of the circled area taken on December 12, 2004
(GISTDA).

E. Relationship Between Landform and the
Tsunami-Affected Areas

To find out the relationship between the landform and the
tsunami inundated areas, the detection of tsunami-affected ar-
eas was carried out simply using the NDVI difference data with
the threshold of −0.085 as obtained in Fig. 10. The results
of landform classification and detection of tsunami-affected
areas are illustrated in Fig. 13. Fig. 13 is cropped from Fig. 11
so as to show the common area between the pre- and postevent
images. In other wards, the preevent image does not cover such
a large area as the postevent image does. Red pixels mean
“Affected” pixels: the pixels with NDVI decreased more than

0.085 after the tsunami. Others are called “Not affected”
pixels.

Visual inspection showed that “Affected” pixels are mainly
located in the “Plain (Low)” area. However, like in a yellow
circle in Fig. 13, even “Plain (High)” area was inundated by the
tsunami. Based on a postevent Ikonos image and the result of
our field survey, the circled area has rather low altitude, prob-
ably less than 10 m. Hence, the landform classification from
90-m SRTM data might not be very accurate, especially for
small areas like this location. It is also considered that the
tsunami was amplified locally because of the seabed configu-
ration and the coastline topography there.
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The areas of landform classes in “Affected” were summed
up. It is observed that about 70% of the affected areas are “Plain
(low)” and about 21% are “Plain (high).” Obviously, most “Af-
fected” pixels in “Plain (high)” class have been misclassified.
The distance from the coastline and other topographic condi-
tions should also be considered for more detailed explanation
of tsunami inundation areas, however. It is also desirable to
employ a DEM with higher resolution than 90-m SRTM data
in the future study.

IV. CONCLUSION

The fundamental analysis toward tsunami-damage detection
using moderate-resolution satellite imagery for the areas hit by
the 2004 Indian Ocean tsunami was carried out. Focusing on
land cover change due to the tsunami, three indexes to indicate
land cover characteristics, which are NDVI, NDSI, and NDWI,
were employed in order to detect the areas affected by the
tsunami. Through the analysis on these indexes, it has been
demonstrated that, the tsunami resulted in the decrease of NDVI
and the increase of NDSI and NDWI. The thresholds of the
indexes to identify the tsunami-affected areas were determined
in two cases, i.e., using only the postevent image and using
both the preevent and postevent images. Comparing with the
truth data provided by GISTDA, the both methods showed
reasonable differences in the three indexes between the tsunami
affected and nonaffected areas. This observation is, however,
dependent on the environmental and climatic conditions of an
affected area. It is also pointed out that the changes in the
three indexes may have some correlation. Thus, the findings
obtained in this paper should be examined further for some
other examples.

Moreover, the relationship between landform characteristics
evaluated from 90-m SRTM data and tsunami inundation areas
was assessed. We found that most of pixels with NDVI greatly
decreased after the tsunami are located in the low plain areas.
For more detailed explanation of tsunami inundation areas,
however, the distance from the coastline and other topographic
conditions should also be considered as well as employing a
higher resolution DEM.

ACKNOWLEDGMENT

The authors would like to thank S. Polngam (GISTDA,
Thailand) for providing the visually detected results of tsunami-
affected areas based on Ikonos images. The authors would also
like to thank T. T. Vu (Chiba University) for reviewing the
manuscript.

REFERENCES

[1] N. Ogawa and F. Yamazaki, “Photo-interpretation of building damage due
to earthquakes using aerial photographs,” presented at the 12th World
Conf. Earthquake Engineering, 2000, Paper 1906. CD-ROM.

[2] F. Yamazaki, K. Kouchi, M. Matsuoka, M. Kohiyama, and N. Muraoka,
“Damage detection from high-resolution satellite images for the 2003
Boumerdes, Algeria earthquake,” presented at the 13th World Conf.
Earthquake Engineering, 2004, Paper 2595. CD-ROM.

[3] K. S. Oo, M. Mehdiyev, and L. Samarakoon, “Potential of satellite
data in assessing coastal damage caused by South-Asia tsunami in
December 2005—A field survey report,” Asian J. Geoinformatics, vol. 5,
no. 2, pp. 16–37, 2005.

[4] F. Yamazaki, Y. Yano, and M. Matsuoka, “Visual damage interpretation of
buildings in Bam city using quickBird images following the 2003 Bam,
Iran, earthquake,” Earthq. Spectra, vol. 21, no. S1, pp. 329–336, 2005.

[5] L. K. Perera and S. Herath, “Detecting tsunami damage from satellite data
in Sri Lanka,” Asian J. Geoinformatics, vol. 5, no. 2, pp. 38–44, 2005.

[6] T. T. Vu, M. Matsuoka, and F. Yamazaki, “Dual-scale approach for de-
tection of tsunami-affected areas using optical satellite images,” Int. J.
Remote Sens., 2007, to be published.

[7] F. Yamazaki, M. Matsuoka, P. Warnitchai, S. Polngam, and S. Ghosh,
“Tsunami reconnaissance survey in Thailand using satellite images and
GPS,” Asian J. Geoinf., vol. 5, no. 2, pp. 53–61, 2005.

[8] S. Vibulsreth, S. Ratanasermpong, and S. Polngam, “Tsunami dis-
asters along the Andaman Sea, Thailand,” Asian J. Geoinf., vol. 5, no. 2,
pp. 3–15, 2005.

[9] T. Farr and M. Kobrick, “The Shuttle Radar Topography Mission produces
a wealth of data,” Trans. Amer. Geophys. Union EOS, vol. 81, no. 48,
pp. 583–585, 2000.

[10] B. Rabus, M. Eineder, A. Roth, and R. Bamler, “The Shuttle Radar
Topography Mission—A new class of digital elevation models acquired
by spaceborne radar,” ISPRS J. Photogramm. Remote Sens., vol. 57, no. 4,
pp. 241–262, 2003.

[11] W. G. Cibula, E. F. Zetka, and D. L. Rickman, “Response of Thematic
Mapper bands to plant water stress,” Int. J. Remote Sens., vol. 13, no. 10,
pp. 1869–1880, 1992.

[12] W. Takeuchi and Y. Yasuoka, “Development of normalized vegetation, soil
and water indices derived from satellite remote sensing data,” J. Jpn. Soc.
Photogramm. Remote Sens., vol. 43, no. 6, pp. 7–19, 2004, (in Japanese).

[13] Y. Arakawa, M. Kato, T. Tachikawa, and K. Okada, “Terra/ASTER urgent
observation of earthquake and tsunami damaged area in north Sumatra,
Indonesia and data analysis by using NDXI,” in Proc. 26th Asian Conf.
Remote Sens., 2005, CD-ROM.

[14] M. Song and D. L. Civco, “A knowledge-based approach for reducing
cloud and shadow,” in Proc. 2002 ASPRS-ACSM Annu. Conf. and FIG
XXII Congr., 2002.

[15] M. Takagi and H. Shimoda, Handbook of Image Analysis [Revised
Edition]. Tokyo, Japan: Univ. Tokyo Press, 2004, pp. 1605–1607
(in Japanese).

[16] B. Jeong, M. Hosokawa, and S. Zama, “A study on classification of
landform using remote sensing and its application to earthquake damage
estimation—A classification of landform using SRTM-3 for estimation of
site amplification factors,” in Proc. 2nd Asia Conf. Earthq. Eng., 2006,
CD-ROM.

Ken’ichi Kouchi received the M.S. degree in civil
engineering, focusing on the detection of damage
due to earthquakes and tsunamis using remotely
sensed imagery, from University of Tokyo, Tokyo,
Japan, in 2006.

He is currently working for Nippon Koei Com-
pany, Ltd., Tokyo, a consulting company of civil
engineering in Japan, and is mainly involved in trans-
port planning.

Fumio Yamazaki (M’03) received the M.S. degree
in 1978 and the Ph.D. degree in 1987, both in civil
engineering, from the University of Tokyo, Tokyo,
Japan.

He worked for Shimizu Corporation, Japan, for
eight years and served as a Visiting Scholar with
Columbia University, for two years. He is currently a
Professor of Urban Environment Systems with Chiba
University, Chiba, Japan. His research interests in-
clude stochastic engineering mechanics, earthquake
engineering, and more recently, application of geo-

graphic information system (GIS) and remote sensing technologies to disaster
management.


