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ABSTRACT: The spatially dynamic response variability of near-surface soil layer during earthquake has been
so far inferred mainly from the observation records of closely spaced seismic arrays. On the dynamic response
variability, this study investigates the influence of laterally heterogeneous soil properties by means of first-order
perturbation (FOP) and stochastic finite element (SFE) techniques. The theoretical FOP solution is derived first
as a frequency-wave number power spectrum. The SFE analysis is then conducted much more effectively by
proposing the assumption of the spatial ergodicity. Then, this study shows that the response variability due to
the soil heterogeneity is significant over the first predominant frequency of a building site. By using the fre-
quency-dependent correlation distance proposed as a simple measure characterizing the response variability,

this study also demonstrates that, within the extent of the heterogeneity published, the FOP analysis is practi-
cally available for the site approximated well as a single soil layer. ‘

1 INTRODUCTION .

Local site effects have a significant influence on the
various characters of earthquake ground motion, es-
pecially on the spatial response variabilities of near-
surface soil layer. The stochastic analysis is in course
of accounting for the significance of the local site ef-
fects pertaining the total wave propagation problem
from seismic source to site of interest (Wu & Aki,
1988). Since we can not determine uncertain material
properties, the stochastic analysis becomes more im-
portant when we understand the spatial statistics of
the uncertainties related to such things as the seismic
source, traveling path of seismic waves, and near-sur-
face local site:

As far as the ground response at near-surface local

site during earthquake is concerned, the spatial re-
sponse variability so far has been inferred mainly
from the observation records of closely spaced seis-
mic arrays (Kataoka et al., 1990; Schneider et al.,

1992; Nakamura, 1996). Some numerical analyses
also have been made for the response variabilities.
The stochastic analyses have been made for local site
effects classified as the irregularities of free-surface
and interface between soil layers (Harada, 1994), and

the heterogeneity of soil properties (Frankel &

Clayton, 1986; - Harada & Fugasa, 1990; Fenton &

- Vanmarcke, 1991; Sato & Kawase, 1992). Deter-

ministic analyses also emphasize the significance of
surficial soil layer using the one dimensional multi-
layer model (Anderson et al., 1996). v

As an extension of those stochastic analyses men-
tioned above, this study is also aimed at investigating
the spatial response variability of surficial soil layer
which has laterally heterogeneous soil properties, as
shown in Fig. 1. While we have to consider the inde-
terministic soil properties by some way, it is common
in the stochastic analyses to treat the indeterministic
nature of structural systems as a stochasticity. Then,
the response variability mentioned in this study is a
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Fig. 1. Single soil layer model resting on rigid base.
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Table 1. Parameters for laterally heterogeneous single soil layer model (H = 30 m).

Parameters Symbols Values
Density (t/m3) p 1.8
Mean P-wave velocity (m/s) Tpo 1530
Mean S-wave velocity (m/s) Cso 300
Poisson’s ratio v 048
Correlation function 54 Gaussian
Correlation length (in) a 25.to 100
Coefficient of variation Oy 0.00 to 0.25
Intrinsic damping ratio D 0.05

seismic version of the response variability since we
‘adopt the same way that has been extensively studied
in engineering mechanics field for structural systems
with stochastic material properties (e.g., Nakagiri &
Hisada, 1985).

This study analyzes the response variability of the

ground by using an analytical approximation and a -

numerical discretization, which are first-order pertur-
bation and stochastic finite element techniques, re-
spectively. After each analysis is done for the seismic
response variability, the comparison as well as dis-
cussion is made for those obtained from both analy-
ses.: Then, this study shows the practical availability
of the perturbation analysis.

2 EVALUATION OF STOCHASTIC GROUND
RESPONSE

This study analyzes the surficial ground motion that is
the stochastic response of heterogeneous single soil
layer induced by the coherent base motion. - That is,
this is an analysis to obtain the practical and hence
simple solution of the ground response with laterally
heterogeneous soil properties. Then, this study pre-
sents two efficient methodologies using a first-order
perturbation method and a stochastic finite element
method to obtain the power spectrum in frequency
and wave number domains, since the space-time sto-
chastic ground response can be represented by the fre-
quency-wave number power spectrum. As well as the
frequiency-wave number response, the space-time re-
sponse can be obtained in both analyses once the
space-time incident wave is decided at the rigid base.

2.1 First-order Perturbation Method

A first-order perturbation technique is adopted so as
to derive the analytically approximate solution of the
problem involving material stochasticities of small
lateral extent. This study considers a viscoelastic
single soil layer overlying a flat rigid base as shown in
Fig. 2. The single soil layer has the density of p, the

complex elastic wave velocity of ¢y =cJ(1+iD) (J =
P, S) where c(} is the elastic P- and S-wave velocity,
D is the linear hysteretic damping ratio, and i = «/—Y
The values of soil parameters used in this study are
shown in Table 1. Since the constant thickness is sup-
posed to be H = 30 m (= z; - z;), the mean predomi-
nant frequency is 2.5Hz for the soil layer model. Such

. mean values of soil parameters are determined under

the consideration of the Chiba site in Japan where the
seismic array observation is performed since 1982
(Lu et al., 1990; Nakamura, 1996).

This study considers the P-SV waves subjected to a
near-surface single soil layer. Following the Born-
type approximation, the perturbation of elastic wave
velocities is assigned in the single soil layer whose
material properties vary laterally. The P-SV wave
equation is solved theoretically by using an integral
equation formulation (Kennett, 1972; Harada &
Fugasa, 1990) on the Cartesian coordinate and corre-
sponding displacement vector systems as shown in

'Fig. 2. Then, a closed-form analytic expression is ob-

tained based on the propagator matrix method (Gil-
bert & Backus, 1966) for the laterally two dimen-
sional single soil layer.

To obtain the perturbation solution, we utlhze the
condition that the vertical displacement is confined to
zero to make the solution simple for practice. While
the derivation of the perturbation solution is abbrevi-
ated, this paper shows a resultant solution of the fre-
quency-wave number power spectrum describing the
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Fig. 2. Coordinate system in the perturbation analysis.
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response variability due to laterally heterogeneous
soil layer as mentioned above. ' The frequency-wave

- number power spectrum as functions of frequency, m,

in rad/sec and wave number vector, K, in rad/m is
given by:

Sfx(x‘, W)

| B )
=|1<jZP 8¢ — k) — 2K 25 As - )| SE. ()
(1)

where § = the Dirac’ s delta function and AS is the
wave number spectrum describing the lateral hetero-
geneity of soil properties. Note that the heterogeneity
of soil pro Bpertles is not required to be isotropic in (1).
X and S, (w) in (1) are the apparent wave number
vector and the wave number power spectrum of the
incident SV base motion, respectively. By using v,p
and V4p standing for vertical wave number corre-
sponding to honzontal wave number, & and Ky, re-
spectively, k% 4p and K ,A in (1) are as follow:

8 cp
Kap=1/cosl —v4pH : ;
3 / ( » ) o
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especially when vertically incident wave is consid-
ered,i.e., k=0, K’ﬁP and K} at k=0 are given by:
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In this case that K, =0 and x= 0, Kgp and Kﬁf, for
confined P-SV wave correspond those for SH and SV
wave. Note that the homogeneous and heterogeneous
parts in (1) are coupled since Ag is not zero at K= K
except special case. Considering this coupling is an
amelioration of the solution proposed by Harada &
Fugasa (1990).

If the heterogeneous part in (1) is neglected, this
two dimensional perturbation solution, in fact, gives
the same solution for one dimensional soil layer.
While the perturbation solution expressed by (1) is
derived for the confined P-SV wave, the perturbation
solution for SV and SH waves is also derived in the
same way (Harada & Fugasa, 1990). We suppose the
case hereafter that Sfx is unity since this study is
aimed at evaluating the response variability of single
soil layer with stochastic material properties.

2.2 Lateral Heterogeneous elastic wave velocity

It is assumed in stochastic analyses that the spatial
correlation at different locations in random field de-
creases with increase of the distance between two lo-
cations. To deal with the lateral heterogeneity of elas-
tic- wave velocities in single soil layer, this study sup-
poses this assumption as well as many other re-
searches (e.g., Frankel & Clayton, 1986; Fenton &
Vanmarcke, 1991; Sato & Kawase, 1992) which
have been done under this assumption to the-correla-
tion structure. Then, thls study ‘adopts the Gaussian
correlation function, R , and its correéspondiig’ wave
number power spcctrum, SA ;a8 follow

A 52 . i
R (5= 60 exp | - - (4a)

A a2x2 R
Sz () = 02 N—exp 1 @b

500

®

400

S-wave Velocity (m/s)
100 200 300

0

0 200 400 600 800 1000
x (m)

Fig. 3. (a) Wave number power spectrum describing laterally heterogeneous elastic wave velocity (correlation distance:
a=50m; C.O.V.: 0,=15 %), and (b) the realization of the corresponding elastic wave velomty for S-wave with mean

velocity of 300 m/s.
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Table 2. Correlation distances of the lateral heterogeneities and sizes of finite element models.

Parameter FEM models
arameters
Q) 2 3) @
Correlation length (m) & 250 50.0 75.0 100.0
Element width (m) B, 5.0 5.0 10.0 10.0
Total width (km) B 1.0 1.0 20 2.0
Ratio of a and B, B ja 020 0.10 0.13 0.10
Ratio of a and B Bla 40.0 20.0 267 20.0
Energy Transmt. Energy Transmt.
Boundary Boundary
- > v
x| Free NV p 4000 (200x20) Finite Elements ~| Free
- Field |~ (Laterally Heterogeneous Ground) ~1{ Field
R RS TR
Rigid Base (Total Motion)
B=200@8, -

Fig. 4. Finite element model used in the response analysis of laterally heterogeneous soil layer.

where 0y and a indicate, respectively, the coefficient
of variation (C.0.V.) and the correlation distance of
laterally heterogeneous elastic wave velocity field.
The extents of the C.0.V. and the correlation distance
are determined based on the previous works (e.g.,
Fenton & Vanmarcke, 1991) as shown in Table 1.
This Gaussian correlation function (4) is used in
many other stochastic problems.

By using the Gaussian correlation function:de-
scribing the stochastic elastic wave velocity, Fig. 3 (a)
shows the example of wave number power spectrum
in which the correlation distance, a , is 50 m and the
C.0.V., 6y, is 15 %, and Fig. 3 (b) shows the realiza-
tion of the corresponding elastic wave velocity for S-
wave with the mean velocity of 300 m/s. The correla-
tion distance of 50 m and the C.O.V. of 15 % describ-
ing the stochasticity of the ground are used hereafter
to show the response variability as a typical example.

The perturbation analysis js carried out using the rela- -

tion that Sfx(x) = IZS (K), , while the stochastic finite
element analysis is carried out using the correspond-
ing elastic wave velocity.

2.3 Stochastic Finite Element (SFE) Method

In order to obtain the numerical solution of the same
problem in the perturbation analysis and then to
verify the perturbation solutions as shown above, a
stochastic finite element (SFE) technique is adopted
using a well-tested code, super FLUSH (KKEI,
1988). This finite element analysis code is used to
compute the complex transfer functions at the surface
of laterally heterogeneous single soil layer modeled
as finite elements. This SFE analysis is conducted
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considering that the vertical displacement is confined
to make the same condition as the perturbation analy-
sis mentioned above.

As shown in Fig. 4, the finite element model con-

_sists of 200 by 20 plane strain elements laterally and

vertically, respectively. The boundaries are modeled
as the fixed boundary for the bottom and the energy
transmitting boundary for the left and right sides.
This boundary conditions give the same condition
used in the perturbation analysis.  Note that in this
SFE analysis each soil column with same soil proper-
ties is also divided 30m=10@ I m+ 10 @ 2. m) to
obtain the better estimate of the surficial response.
The free-field is also modeled using mean soil prop-
erty of the finite elements, so that 2.5 Hz is the mean
of the first predominant frequency at each location.

Table 2 shows the correlation distances of laterally
heterogeneous soil layer and the sizes of finite ele-
ment models in this SFE analysis. Note that since the
soil property varies laterally, the lateral finite element
size should be changed corresponding to the hetero-
geneity. To obtain the proper response of the hetero-
geneous ground model in this SFE analysis, we use
the much smaller width of the finite element size (less
than 0.20 times) and the much larger width of the fi-
nite element model (more than twenty times) com-
pared to the correlation distance of the heterogeneity,
as shown in Table 2. Therefore, the ground response
in this study is considered to be statistically homoge-
neous.

Owing to the statistical homogeneity considered in
space, we assume a spatial ergodicity which is the sta-
tistical technique showing that the spatial ensemble
mean is independent of the spatial sampling. By us-
ing this spatial ergodicity assumption, the computa-
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Fig. 5. Amplitude of complex transfer function estimated by the stochastic finite element analys1s for laterally heteroge-
neous soil layer (a = 50 m, 6,= 15 %; upper: for 1-D response, lower: for 2-D response).

tional efficacy is enhanced for the evaluation of the
statistically homogeneous response variability, while
the ordinary finite element analysis gives a determin-
istic result per computation once the material proper-
ties are specified in the finite element model.

The statistically homogeneous and stationary
transfer function between ground surface and rigid
base is obtained for the P-SV waves propagating in
stochastic soil layer. Then, the amplitude of the com-
plex transfer function is estimated for the laterally
heterogeneous soil layer in which a = 50 m and 6y =
15 %, as shown in Fig. 5. The upper figure shows the
response of the one dimensional soil column and the
lower figure shows the response of the two dimen-
sional soil layer ranging over 500 m at intervals of 5
m. As this study assumes that the base motion is
unity, it is found in Fig. 5 that the ground response is
affected over the first predominant frequency, espe-
cially at each predominant frequencies. Note that the
result obtained from the assembly of one dimensional
analysis should be different from this P-SV wave
propagation analysis in which the responses of each
soil column are affected each other.

3 RESPONSE VARIABILITY DUE TO
STOCHASTIC GROUND MODELS

The stochastic ground response is computed by
means of the perturbation analysis and the stochastic
finite element analysis. As a result, it is found in both
analyses that while the C.O.V. of the ground response
shows the increasing trend .with increase of fre-
quency, the mean ground response shows good agree-
ment each other and with that of the one dimensional
analysis. Then, we pay attention to the response vari-
ability which is evaluated.in.terms of the coherence
function and then the frequency-dependent correla-
tion distance of the ground response which is pertain-
ing to spatially v;aryingkea_rthquake ground motion.

3.1 Coherence Function Descrtbmg Spatzal Response
Variability of Stochastic Ground

The coherence functions are computed analytically in
space and frequency domains to describe the spatial
response variability of laterally heterogeneous
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Fig. 6.. Coherence function estimated from perturbation and finite element analyses for laterally heterogeneous soil laye
(a=50m, 6y=15 %; upper: frequency in Hz, lower: separation distance in meter).

ground models, since the frequency-wave number
power spectrum is obtained from the first-order per-
turbation method and since the ground responses on
surficial equidistant grid are obtained from the sto-

-chastic finite element method. Figure 6 shows the co-

herence functions representing the reésponse variabil-
ity of the ground model in which @ = 50 mand 6, = 15
%-as a typical example as mentioned dbove. The up-
per and lower figures indicate the coherence function
with respect to frequency in Hz and separation dis-
tance in meter, respectively.

- The coherence functions estimated from the both
analytical and numerical analyses show the similar
trend each other as shown in Fig. 6. Itis found in this
study that the coherence functions show the relatively
monotonous -decrease with increase of separation dis-
tance, while as frequency increases coherence func-
tion shows several decays especially around the
dominant frequencies of the ground models. Further-
more, the coherence functions computed from both
analyses are almost consistent with those obtained
from the seismic array records which provides a use-
ful information currently available (Kataoka et al.,
1990; Lu et al., 1990; Nakamura,-1 996). Then, the

frequency-dependent correlation distance obtaine:
from the coherence function is adopted to evaluate th
spatial response variability of laterally heterogeneou
ground models. ‘ '

3.2 Frequency-dependent Correlation Distance o
Stochastic Ground Response

Suppose the coherence function decreases monoto
nously with respect to the separation distance. Then
the seismic response variability is efficiently evalu
ated by the frequency-dependent correlation distanc:
of the ground response. For that reason, this stud;
adopts a Gaussian-type coherence function model a
follows:

Y& =exp -/} €

where g indicates a frequency-dependent correlatior
distance of the ground response estimated by the re
gression analysis. Note that the maximum separatios
distance in this study is considered up to 300 m whict
is the same order in the analysis of the Chiba array
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Fig. 7. Comparison of frequency-dependent correlation distances, ¢’s in (1), estimated from \peﬂurbation\ (broken line)
and finite element (solid line) analyses for laterally heterogeneous soil layer (left: case of o= 15 % and a = 50 m, right:

case of 6y=22.5 % and a = 50 m).

records (Nakamura, 1996).

It is demonstrated in this study that as the correla-
tion distance (@) and C.0.V. (o) of material proper-
ties increase, the spatial response variability shows
the decreasing trend. Figure 7 shows the examples of
the frequency-dependent correlation distance. The
left and right show, respectively, the case that 6= 15
% and a = 50 m and the case that 63 =22.5% and a =
50 m. Figure 7 also compares the frequency-depen-
dent correlation distances gp and g which are esti-
mated from perturbation and stochastic finite element
analyses, respectively. ,

To compare the both results, the L, norm differ-
ence between gp and gy is defined:

fflogz{qp(f, 60)/4r(f, 09)} df
[ tog*{ap(f, o0} of

Dpr(0g; a)=

(6)
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The L, norm difference indicates the difference of the
results between perturbation and finite element analy-
ses. That is, the results of both analyses become dif-
ferent from each other as the L, norm difference in-
creases. Figure 8 shows the L, norm difference for
laterally heterogeneous soil layer. The left and right
figures indicate the cases of a =50 m and the cases of
0o = 15 %, respectively. Note that; in both analyses,
the frequency range of 2.5 to 10.0 Hz is used in the
integration of above equations, since the ground re-
sponses of lower frequency components are coherent
in this study, the frequency at'least less than the pre-
dominant frequency of the ground, as can be seen in
Figures 5, 6, and 7. o

By comparing the results from perturbation analy-

sis with those from stochastic finite element analysis,

the largest L, norm difference is obtained in the case
that 6y =22.5 % and a = 50 m as shown in Fig. 8. Itis
found in Fig. 7 that even in'the case of the largest L,
norm difference, both results are allowable within the
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Fig. 8. Lynorm difference between frequency-dependent correlation distances g, and g, estimated from perturbation

 and finite element analyses, for laterally heterogeneous soil layer (left: @ = 50 m, right: o = 15 %).
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