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ABSTRACT: After a natural disaster strikes, it is necessary to assess the amount of damage in vulnerable areas 
immediately. Synthetic aperture radar (SAR) is independent of time and weather conditions for capturing images of 
ground surface. In this research, post-event polarized data from ALOS-2 PALSAR-2 with 3.12-m resolution were used 
to classify the damaged areas in Mashiki town, Kumamoto prefecture, Japan, which was severely affected by the April 
14, 2016 (Mw6.2) earthquake and the April 16, 2016 (Mw7.0). Accordingly, the texture measures of the SAR 
backscatter data set were prepared and used for supervised classification using the Support Vector Machine (SVM) 
algorithm. This study aims to explore the potential of texture features for detecting damaged regions after earthquakes. 
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1. INTRODUCTION 

Remote sensing is an efficient tool to obtain a wide 
range of information of the earth surface when a natural 
disaster strikes. Damage assessment of buildings 
immediately after the occurrence of a natural disaster is 
one of the most important topics of satellite remote 
sensing. Significant amount of studies (Yamazaki et al. 
2005; Miura et al. 2013) have been conducted to monitor 
damage condition in urban areas. 

An Mw6.2 earthquake hit the Kumamoto prefecture in 
Kyushu Island, Japan on April 14, 2016. Twenty-eight 
(28) hours later, another earthquake of Mw7.0 occurred at 
a close location to the first event (USGS, 2016; JMA, 
2016). Extensive landslide and damage to buildings, 
roads and bridges were associated and human casualties 
had been reported including 50 deaths by the Kumamoto 
earthquake (Cabinet Office of Japan, 2016). The 
epicenters of the both events were located in Mashiki 
town (about 33 thousand-population), to the east of 
Kumamoto city (about 735 thousand-pop.). Mashiki town 
was most severely affected due to very strong seismic 
ground motion (Hata et al., 2016). A continuous surface 
faulting was observed in the agricultural field (Yamazaki 
and Liu, 2016) and the coseismic displacements were 
evaluated from LiDAR data (Moya et al., 2017) in the 
town. 

This paper evaluates the use of texture analysis from a 
HH and HV polarized ALOS-2 PALSAR-2 image taken 
after the 2016 Kumamoto earthquake for detecting 
building damage in Mashiki town. Support Vector 
Machine (SVM) algorithm was used for supervised 
classification of the study area in four land-cover classes: 
damaged urban, non-damaged urban, vegetation, and 
paddy field. The result was compared visually with the 
damage grades of built-up areas, prepared by the field 
surveys of the Architectural Institute of Japan (AIJ), 
(NILIM, 2016). 

2. STUDY AREA AND DATA SET 

The study area is the central part of Mashiki town, 
Kumamoto prefecture, Japan (shown as yellow frame in 
Figure 1), which is closely located the Futagawa fault. 
The black square in Figure 2(a) shows the study area, 
located between the Mashiki Town Hall building and 
Akitsu River with a building-collapse ratio of more than 
50%. This area was used for preparing a land-cover 
classification map in this study. The damage grades of 
built-up areas (with 2,340 buildings) prepared by AIJ are 
represented by collapsed building ratio in a 57 m x 57 m 
grid-cell. 

A post-event PALSAR-2 image taken April 21, 2016 
was used for the texture analysis. Figure 2(b) shows a 
color composite of the HH, HV, HH-HV polarizations. 
The study area includes build-up urban, vegetation, and 
paddy field. The SAR image was taken in the ascending 
path with right-look. The data product is Level 1.5. The 
off-nadir angle was 30.4 degrees at the center of the 
image and the azimuth and range resolution was 3.12 m. 
The image was taken with the full polarization (HH, HV, 
VV, and VH) in the StripMap2 mode. In this study, only 
HH and HV polarizations were used considering the 
sensitivity of them for detecting built-up and vegetation 
areas. Pre-processing was done by converting the digital 
number of the data set to backscattering coefficient 
(sigma-naught in dB) using the equation below (JAXA, 
2016).                                                                                   

� � 1
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0 log0.10 CFDN ���  (1) 

  
where DN is the digital number of backscattering 
intensity, CF1 is the calibration factor, and �loc is the local 
incidence angle. Then Lee filter with the window size 
3x3 was applied to reduce speckle noise. 
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Figure 1. Location of ALOS-2 image used in this study. 
 

 
(a) 

 
(b) 

Figure 2. (a) Building-collapse map, prepared according 
to the field surveys (NILIM, 2016); (b) the color 
composite of the post-event SAR backscattering 

coefficient image. Dark blue border in (a) represents the 
location of (b) in Mashiki town. 

 
3. METHODOLOGY 

After performing the pre-processing steps, texture 
measures were calculated for the backscattering 
coefficients of HH and HV. Previous researches have 

shown that the texture measures provide vital information 
from radar imagery ��������	
���
�������������������
������
1982). Among several statistical texture methods, the 
grey-level co-occurrence matrix (GLCM) algorithm is 
one of the most powerful methods for land-cover 
monitoring (Haralic et al., 1973), and thus, the GLCM is 
used in this study.  

Texture represents the spatial distribution of the grey-
level value and its frequency with another one under a 
specific displacement and orientation. Different features 
such as angular second moment, contrast, correlation, 
homogeneity, variance, mean, entropy, energy, maximum 
probability and dissimilarity were extracted from the 
GLCM using a specific window-size by the following 
equations: 

 

 
where � �jip ,  is the (i, j)-th entry in a normalized grey-
tone spatial dependence matrix � � RjiP /, ; R is the total 

sum of P;  � � � �jiPip
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�  is the i-th entry in the 

marginal probability matrix obtained by summing the 
rows of � �jip , ; and x� , y� , x�  and y�  are the means 

and standard deviations of px and py.  
In this study, eight textural features at angle 0° and 

distance 1, and window size 3 x 3 and a quantization 
level 64 were used to evaluate its performance for 
classification.  

In order to use more effective texture measures for 
classification, the statistics information such as the 
minimum, mean, maximum, and standard deviation of 
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pixels values for each damage ratio class by AIJ were 
evaluated. It was observed that only in the mean texture 
data differences among the damage grades were observed. 
Therefore, the mean texture of HH, shown in Figure 3(a), 
and that of HV were selected to stack with the original 
values of HH and HV as the input data set for 
classification. Supervised classification is applied to 
detect the damaged areas. The support vector machine 
(SVM) algorithm (Vanpik, 2000) was chosen for this 
purpose.  

A closed-up of the aerial photograph taken at 12:21 
(local time) on April 16, 2018 by the Geospatial 
information Authority of Japan (GSI) was used to select 
training samples for classification. The training samples 
mainly consist of square shapes of 30 m in length, as 
shown in Figure 3(b) and three sample areas were 
selected for each class. 
 

  
(a) 

 
(b) 

Figure 3. (a) Mean measure of texture analysis from 
post-event image; (b) training samples used for 

classification plotted on the aerial photograph of central 
Mashiki town taken on April 16, 2016 by GSI. The black 
frames a, and b in (b) show the location of classification 

result examples in Figure 4. 
 

4. RESULTS 

Four land-covers classes: damaged urban, non-
damaged urban, vegetation and paddy fields were 
considered in the supervised classification based on SVM 
algorithm. Since training samples have an important role 
in supervised classification, we examine different size of 
them. It was observed that each sample is better to 
include one individual building in cases of damaged and 
non-damaged classes. Thus, the same size and square 
shape were considered. Therefore, the same number of 
pixels was used for all the four classes in classification. 
Moreover, the damaged samples were selected from 
collapsed building areas, not from debris. The result of 
classification is shown in Figure 4.  

For validating the result of classification, we compared 
them visually with an aggregated damage-grade map by 
NILIM (2016). The areas shown in Figure 4 contain the 
damage grade more than 50% based on the report. We 
used the footprint of buildings provided by the Geospatial 
Information Authority of Japan (GSI) to make ground 
truth data by visual inspection and having more precise 
comparison with the NILIM map. The red and yellow 
footprints show damaged and non-damaged buildings in 
the target area. The comparison between truth data (left) 
and classification results (right) show similarity for 
damaged parts and non-damaged buildings to some extent. 
However, a more detailed comparison is needed in the 
future. 
 

 
(a) 

 
(b) 

Figure 4. Aerial images with building footprints (left). 
Red and yellow polygons were made by the authors 

showing damaged and non-damaged buildings. 
Classification results using SVM algorithm (right). The 

location of (a) and (b) are shown in Figure 3(b). 
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5. CONCLUSIONS 

In this study, the GLCM texture measures were applied 
to improve the supervised classification of SAR intensity 
images to detect damage parts of urban areas. Mashiki 
town, Kumamoto prefecture, Japan, which was most 
severely affected by the April 2016 Kumamoto 
earthquake was selected as a study area. By comparing 
the minimum, mean, maximum and standard deviation of 
pixel values of eight texture measures in each 
polarization with the damage-grade map prepared by 
NILIM, the mean texture was found to show a difference 
among damage levels of built-up areas. Therefore, the 
mean textures of the HH and HV polarization images and 
their original values were used for SVM classification of 
the target area. The classification was carried out for four 
classes: damaged urban, non-damaged urban, vegetation, 
paddy fields. The result was compared with the damage-
ratio map by the field survey. Through the comparison, 
the classification result from the SAR data was found to 
be consistent with the field survey result. 
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