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Abstract 

On April 14, 2016 at 21:26, an Mw 6.5 earthquake occurred in Kumamoto prefecture, Japan. Soon after, about 28 hours 

later, another earthquake of Mw 7.1 occurred. Thus, the first event was designated as the foreshock and the second one 

as the mainshock. The both epicenters were located close to residential areas, such as Mashiki town, Kashima town, 

Mifune town and Nishihara village. Therefore, the earthquake produced extensive losses to the infrastructure and 

human losses. In this paper, building collapsed and landslide produced during the mainshock are detected from a pair of 

digital surface models (DSM), before and after the mainshock, obtained from airborne Lidar data. Based on the 

difference of the building height between the pre-event DSM and post-event DSM, the collapsed buildings and 

undamaged buildings are recognized. Our results point out that Lidar technology is an important tool in disaster 

management.  
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1. Introduction 

On April 14, 2016 at 21:26, an Mw6.5 earthquake occurred in Kumamoto prefecture, Japan. The epicenter 

(32.7°N, 130.8°E and 11 km depth) was located at the end of the Hinagu fault. About 28 hours later (April 

16, 2016 at 01:25), another earthquake of Mw7.1 occurred in the Futagawa fault. Thus the first event was 

designated as the "foreshock" and the second one as the "mainshock". The both events were located in the 

suburban area of Kumamoto city with 735 thousand population. Therefore, extensive damage such as human 

loss, collapse of buildings and bridges, landslides, damage to soils and foundations, and damage of historical 

structures occurred. 

Collapse of buildings during earthquakes is the main cause of human loss and thus it is important to 

quantify the collapsed buildings for disaster loss assessment. Remote sensing technologies are very useful for 

this purpose (Yamazaki and Matsuoka, 2007; Yamazaki and Liu, 2016) because it provides a rapid 

estimation of the degree of damage produced by earthquakes. Based on the sensor type, remote sensing 

technologies can be categorized in two types (Yamazaki and Liu, 2016): passive, which includes optical and 

thermal sensors, and active, such as Synthetic Aperture Radar (SAR) and Light Detection and Ranging 

(Lidar). 

In this paper we will explore the potential use of Lidar data to extract collapsed buildings during the 

mainshock of the 2016 Kumamoto earthquake. Lidar data have the advantage that it can provide geometrical 

features of buildings (Vu et al., 2003; Vu et al., 2009); although efforts have been made to extract building 

features from other sensors (Liu et al., 2014; Suzuki et al., 2014; Zakeri et al., 2015). We used two DSMs 

(Digital Surface Model), before and after the earthquake, obtained from Lidar data and extract the elevation 

inside the buildings footprint data. Three parameters are used: an average of the difference of the elevations, 

the standard deviation of the differences of elevation, and the standard deviation of pre-event DSM and post-

event DSM. Then, the K-mean cluster method is applied to separate collapsed buildings from un-collapsed 

ones. The result represents a preliminary attempt to grasp collapsed buildings and it will contribute to 

improve a better framework that will be published later.  

2. The study area and data 

On April 15, 2016, one day after the big foreshock, a Lidar DSM was collected by Asia Air Survey Co., Ltd. 

The survey generated the DSM with the ground return density averaging 1.5~2 points/m
2
. Soon after, a 

second mission was send on April 23 because of the un-expected mainshock occurred on April 16. The 

second mission generated DSM with the average point density of 3~4 points/m
2
. This dataset is one of the 

few cases in which pre- and post-event DSMs are available with the same airplane, instrument and pilot (Air 

Survey Co., Ltd., 2016). For the sake of brevity, the DSM collected on April 15 and April 23 will be referred 

as PreDSM and PostDSM, respectively. After rasterize the raw point clouds, the DSMs have a data spacing 

of 50 cm. 

Fig. 1 shows the extension of the PreDSM and PostDSM, where it can be observed that the PreDSM 

extends a bigger area than the PostDSM does. The common area from the both DSMs covers parts of the 

Mashiki town, Kashima town, Mifune town, and Nishihara village. The whole common area is composed of 

rural residential areas, agricultural fields and forests. The common area also includes a part of the Futagawa 

fault, which caused the mainshock of the Kumamoto earthquake. 

Since the study area is located close to the epicenter and the active Futugawa fault, a permanent crustal 

deformation was produced during the earthquake. Therefore, it is necessary to consider this shift in the 

PostDSM before detecting the collapsed building. An automatic procedure to calculate the three-dimensional 

permanent deformation was implemented by Moya et al. (2016) and applied to these Lidar data. Fig. 2 

illustrates the east-west and north-south components of the permanent displacement occurred during the 

Kumamoto earthquake. The horizontal deformation of up to 2 m and the subsidence of up to 2 m were 

observed in the study area. As mentioned before, the post-event DSM was shifted by the direction and 

magnitude of the permanent crustal deformation. Then, the detection of collapsed buildings is carried out and 

shown in the next section. 
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Fig. 1- DSMs acquired before and after the 2016 Mw 7.1 Kumamoto earthquake (Modified from Moya et al., 

2016). 

 

 

Fig. 2- Horizontal components of the permanent displacement occurred during the 2016 Mw 7.1 Kumamoto 

earthquake within the study area (Modified from Moya et al. 2016). 

3. Extraction of collapsed buildings  

Fig. 3 shows the elevation of two buildings: a collapsed building and an uncollapsed one. The blue and red 

dots represent the elevation recorded before and after the earthquake, respectively. There is a clearly 

reduction of the elevation in the case of the collapsed building in comparison with the uncollapsed building. 

Therefore, the difference between the elevations before and after the earthquake is used as a parameter to 

extract collapsed buildings. To simplify the evaluation, the average of the difference within the footprint area 

of a building is used (DIF). Additionally, two more parameters are used to evaluate the buildings: the 

standard deviation (STD) of the differences of elevations and the correlation coefficient (r) between the 

elevations of the PreDSM and PostDSM. The standard deviation is used to consider partially collapsed 

buildings, which would show higher standard deviations compared with those of undamaged or totally 

collapsed buildings. The correlation coefficient (r) has proved to be effective to detect changes between a 

pair of satellites images (Uprety et al., 2013; Liu et al., 2013). The r ranges from -1 to 1 and basically if r is 

close to one, it is assumed that there is no change and if r is close to zero it is assumed that a change occurred. 

Therefore, the three parameters are calculated for each building as follows: 
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where i  N,...2,1  is the sub-index that represent the i-th location inside a building-footprint area. N is the 

number of elevations inside a building footprint. Hai and Hbi are the elevations obtained from the PreDSM 

and PostDSM, respectively. The building-footprint information is provided by the Geospatial Information 

Authority of Japan (GSI). We evaluate only buildings with footprint areas of more than 20 m
2
. The 

parameters of the buildings shown in Fig. 3 are depicted in Table 1. As you can see, the DIF and r show a 

clear contrast between the two buildings. It means, low r and high DIF for the collapsed building and the 

opposite for the uncollapsed building. On the other hand, STD does not show a big difference between the 

collapsed and uncollapsed buildings. From a closer look, three main reasons produce the high STD in 

undamaged buildings. First, the resolution of the average point density might produce some differences in 

the edges of the buildings. Secondly, there is not a precise matching between the Lidar data and the building-

footprint database. Thus, some surrounding ground elevation data are also included in the calculation, which 

may be increased by a neighboring collapsed-building. Thirdly, a building could suffer from a slight lateral 

distortion that makes some elevation points at the boundary of the footprint polygon change considerably. 

 

Fig. 3- The aerial images taken before (a) and after (b) the earthquake and the DSMs of a collapsed and un-

collapsed building (c and d). The blue dots represent the PreDSM and the red dots the PostDSM 
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Table 1- Control parameters (DIF, STD, and r) of the two buildings shown in Fig. 3 

building DIF STD R 

Collapsed -2.85 1.64 0.07 

Undamaged -0.09 1.04 0.91 

 

 

Fig. 4- Scatter plot of the parameters used for the detection of collapsed buildings 

 

A total of 26,071 building were evaluated. First we extracted the elevations of the points inside each 

building and then the DIF, STD and r were calculated. Fig. 4 shows the parameters calculated for each 

building where the shaded color depicts the density of the dots. As can be seen, most of the points are located 

at approximately (DIF, STD, r) = (0 m, 0.5 m, 0.9) which represent indeed undamaged buildings. The next 

issue is the criterion to set a threshold that could separate properly collapsed buildings. It is obvious that the 

buildings that have the lowest values of DIF represent collapsed buildings. What is not clear is to establish 

the value that would be used to judge which buildings are collapsed. Here, the K-mean cluster method is 

used to extract collapsed buildings. The method clusters the data and separates them into a specified number 

of sets. The objective of the method is to minimize the inertia of each set: 

 

 
 


k

i Sx

i

i

x
1

2
min   (4) 

 
where for our purpose, x is a vector that contains the control parameters (DIF, STD, r), k = 2 is the number of 

sets: collapsed and uncollapsed buildings, Si represent a specific set, and i is the centroid of a set Si. 

Additional details on this method can be found in Alpaydin (2014). The first step of the method is a first 

estimation of the centroid of each set and groups all the data to the closest centroid. Then, a looping process 

is applied to update the location of the centroid based on the average of the samples of each set. The loop 

stops when the centroid does not move longer that certain threshold. Fig. 5 shows the groups of data 

obtained from the K-mean cluster method. It is observed a clear threshold in the DIF parameter with a value 

of approximately -1m (Fig. 5a-b). On the other hand, there is not threshold for the other two parameters. 

These results at least show that DIF is the key parameter. 
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Fig. 5- Classification of uncollapsed and collapsed buildings by the K-mean cluster method. 

 

 

Fig. 6- Spatial distribution of collapsed buildings inside an area of Mashiki town. 
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In order to evaluate the result from the K-means cluster method, a zooming up of an area in Mashiki 

town, which is one of the most severely damaged areas, is shown in Fig. 6. The aerial images taken before 

and after the earthquake, which have a resolution of 16 cm and 25 cm, are shown in Fig. 6a and 6b, 

respectively. The difference of elevation between the PostDSM and PreDSM is shown in Fig. 6c. The dark 

green pixels represent high negative values, while dark red pixels represent high positive values. When the 

dark green pixels are cluster, there is high possibility that those represent a collapsed building. Besides, it can 

be observed also either green or red values aligned forming polygons. Those, lines are due to the imperfect 

matching of building-elevation values between the PreDSM and the PostDSM. As mentioned before, those 

pixel values produced high values of STD. 

Fig. 6d shows an overlapping of the collapsed buildings extracted from the K-means cluster method 

with the differences of DSMs (Fig. 6c). The red polygons are the building-footprints that were classified as 

collapsed, while the blue polygons represent uncollapsed buildings. The automatic extraction shows 

consistency with visual inspection of the collapsed buildings that can be performed from Fig. 6c. From the 

26,071 buildings that were evaluated, 1,300 buildings were classified as collapsed. 

4. Conclusions  

An automatic procedure to extract collapsed buildings from a pair of Lidar data taken before and after the 

2016 Kumamoto earthquake was performed. For this purpose, the geographic information of building-

footprints was employed, which was provided by the government. Three parameters were selected to 

evaluated if a buildings collapsed or not: the average of the differences between the PreDSM and PostDSM 

data within a building footprint (DIF), the standard deviation of that differences (STD), and the correlation 

coefficient between the PreDSM and PostDSM (r). The K-mean cluster method was selected to define two 

sets of data: collapsed and uncollapsed buildings. From the results, it was observed that DIF was the main 

parameter to distinguish the collapsed buildings. From a total of 26,071 evaluated buildings, the method 

extracted 1,300 collapsed buildings. The results were compared with an area within the Mashiki town and 

showed a good agreement from a visual inspection evaluation. However, a deeper evaluation of the results 

(i.e., a comparison with field survey data and a look of the overall results) is necessary. 

It was also observed that in order to improve the quality of the parameters, it is recommended to 

discard the elevation points located at the boundaries of building footprint polygons because there is not a 

perfect matching between the PreDSM and the PostDSM and this fact increases considerably the STD. These 

preliminary results are helpful to provide an idea of where are concentrating the collapsed buildings. 

However, as mentioned before, it is necessary a deep evaluation of the results. What is also important is to 

define properly the relation between the parameters used (DIF, STD, r) and the typology of the collapsed 

buildings. All this points will be addressed in the final publication of this research.  

5. Acknowledgements 

The LIDAR data and aerial photographs used in this study were acquired and owned by Asia Air Survey Co., 

Ltd., Japan. 

6. References 

[1] Alpaydin, E. (2014): Introduction to machine learning, Third Edition, The MIT press, 

Cambridge.  

[2] Asia air Survey Co., Ltd.: The 2016 Kumamoto Earthquake. 

http://www.ajiko.co.jp/en/blog/y2016/id572751JWX/ (last accessed August 2016). 

[3] Liu, W., Yamazaki, F., Gokon, H., and Koshimura, S. (2013): Extraction of tsunami-flooded 

areas and damaged buildings in the 2011 Tohoku-Oki earthquake from Terra-SAR intensity 

images. Earthquake Spectra, Vol. 29, No. S1, S183-S200. 

http://www.ajiko.co.jp/en/blog/y2016/id572751JWX/


 

 WORLD ENGINEERING CONFERENCE 

ON DISASTER RISK REDUCTION 

5 - 6 December 

 

8 

[4] Liu, W., Yamazaki, F., Adriano, B., Mas, E., Koshimura, S. (2014): Development of building 

height data in Peru from high-resolution SAR imagery. Journal of Disaster Research, Vol. 9, 

No. 6, pp. 1042-1049. 

[5] Maruyama, Y., Tashiro, A., and Yamazaki, F. (2014): Detection of collapsed buildings due to 

earthquakes using a digital surface model constructed from aerial images. Journal of 

Earthquake and Tsunami, Vol. 8, No. 1, 13 p. 

[6] Moya, L., Yamazaki, F., Liu, W., and Chiba, T. (2016): Calculation of coseismic displacement 

from Lidar data in the 2016 Kumamoto, Japan, earthquake. Nat. Hazards Earth Syst. Sci. 

Discuss., doi:10.5194/nhess-2016-315, in review. 

[7] Suzuki, K., Liu, W., and Yamazaki, F. (2014): Height estimation of buildings from high-

resolution SAR data based on interferometric analysis. Proc. 35
th

 Asian Conference on Remote 

Sensing, Nay Pyi Taw, Myanmar, 6 p. 

[8] Uprety, P., Yamazaki, F. (2013): Damage detection using high-resolution SAR imagery in the 

2009 L’Aquila, Italy, earthquake. Earthquake Spectra, Vol. 29, No. 4, pp 1521-1535. 

[9] Vu, T. T., Tokunaga, M., and Yamazaki, F. (2003): Wavelet-based extraction of building 

features from airborne laser scanner data. Can. J. Remote Sensing, Vol. 29, No. 6, pp. 783-791. 

[10] Vu, T. T., Yamazaki, F., and Matsuoka, M. (2009): Multi-scale solution for building 

extraction from LiDAR and image data. International Journal of Applied Earth Observation 

and Geoinformation, Vol. 11, 281-289. 

[11] Yamazaki, F., and Matsuoka, M. (2007): Remote sensing technologies in post-disaster 

damage assessment. Journal of Earthquakes and Tsunamis, Vol. 1, No. 3, pp 193-210. 

[12] Yamazaki, F., and Liu, W. (2016): Remote sensing technologies for post-earthquake 

damage assessment: A case study on the 2016 Kumamoto earthquake. Keynote Lecture, 6
th

 

ASIA Conference on Earthquake Engineering, Cebu city, Philippines, 8 p. 

[13] Zakeri, H., Liu, W., Yamazaki, F., Nonaka, T., and Sasagawa, T. (2015): Building damage 

assessment in the 2010 Haiti earthquake using high resolution SAR imagery. Proc. of the 

International Symposium on Remote Sensing, Tainan, Taiwan, 4 p. 


