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ABSTRACT 
 
 The characteristics of collapsed buildings are examined by image processing of 

aerial television images taken after the 1995 Hyogoken-Nanbu (Kobe) earthquake. 
In image processing, not only variance and predominant direction of edge 
intensity, but also some statistical textures derived from the co-occurrence matrix 
of edge intensity are used for the extraction of the characteristics of collapsed 
buildings. The proposed automated damage detection method is applicable to 
high-resolution satellite imagery such as IKONOS with a panchromatic one-meter 
spatial resolution as well as to aerial imagery. Using this approach, collapsed 
buildings in the Kobe images are approximately identified. 

  
  

Introduction 
 
 It is important to grasp damage information in stricken areas just after an earthquake in 
order to perform quick rescue and recovery activities. Airborne remote sensing is one of the 
techniques available for gaining disaster information at an early stage, because these images can 
be obtained quickly with very high resolution. Recently, a new overlay method between pre- and 
post-event images based on artificial neural networks was applied to detect natural disasters 
using aerial photographs (Kosugi et al. 2000). However, it is not realistically possible to obtain 
images of the stricken areas before the disaster. Therefore, we are studying a method of 
automated detection of damaged buildings due to earthquakes using only post-event images in 
order to make use of the instantaneous acquisition ability of helicopters and airplanes (Aoki et al. 
2001, Mitomi et al. 2001). In our previous study, severely damaged buildings were identified by 
color indices and edge elements in an original RGB image. However, it was difficult to apply the 
same threshold values used for color indices to other images, because of the differences in factors 
such as the influence of sunshine and built environments (Mitomi et al. 2000). In this study, we 
propose a method of detecting areas with building damage based only on edge information. The 
application of the method that does not use color information to other aerial images and some 
panchromatic satellite images, such as IKONOS, QuickBird and OrbView, which have one-meter 
spatial resolution on the ground surface, can be expected (Gruen 2000).  
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Aerial HDTV Images and Training Data 
 
 Aerial shooting from helicopters of areas affected by the Kobe earthquake was performed 
shortly after the event by the Japan Broadcasting Corporation (NHK). These images were taken 
at a 30-45 degree angle from the vertical direction, from a height of about 300m using NHK’s 
HDTV cameras. In this study, we used some of these images taken 10 days after the event. The 
HDTV images were converted to RGB image data with a bitmap format, and the panchromatic 
images were fabricated from the method to obtain the brightness signal for NTSC, which is one 
of the image transmitting systems used for television. One of the images used in this study is 
shown in Figure 1. The spatial resolution of this image is approximately 9cm to17cm for near to 
far distances from the camera, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Training data used in this study, and extraction accuracy in cases of both pixel 
level (Dpx) and spatial filtering level (Darea).  

c1 debris of collapsed wooden buildings 45.7 49.3 47.2 90.2 95.5 93.6
c2 brown roof of non-damaged low-rise buildings 0.0 0.0 0.1 0.0 0.0 0.0
c3 gray roof of non-damaged low-rise buildings 0.2 0.4 0.3 0.0 0.0 0.0
c4 big roof of a gymnasium 0.0 0.0 0.0 0.0 0.0 0.0
c5 brown wall of non-damaged low-rise buildings 16.8 19.1 19.1 1.0 2.4 2.6
c6 white wall of non-damaged low-rise buildings 18.6 19.8 19.9 0.0 0.0 0.0

c7 blue vinyl canvas sheets 8.2 9.2 9.4 0.0 0.0 0.0
c8 railways 2.1 2.7 2.5 0.0 0.0 0.0
c9 asphalt roads and parking lots 8.2 9.3 9.3 2.8 5.3 4.4

c10 bare ground 4.4 4.9 5.1 0.0 0.0 0.0
c11 tennis court 1.5 1.6 1.6 0.0 0.0 0.0
c12 vegetation 0.9 1.2 0.9 1.0 1.9 1.4

*1 denotes the combination with four threshold values of Ev, Ed, Ta and Te.
*2 denotes the combination with three threshold values of Ev, Ed and Ta.
*3 denotes the combination with three threshold values of Ev, Ed and Te.

*3
training data

Dpx (%) Darea (%)
*1 *2 *3*1 *2

 
Figure 1. Aerial HDTV image. 

 
Figure 2. Samples of training data 

for collapsed buildings. 



 The outlines of undamaged buildings were clearly observed in the images while the 
images of collapsed buildings were vague due to the preserve of building debris, e.g., roof tiles, 
soil under the roof tiles and exterior walls. Hence, in this study, the characteristics of the area 
with collapsed buildings were examined using edge information. Typical areas with collapsed 
buildings (c1), elements of undamaged buildings (c2-c6), and objects other than buildings (c7-
c12) were selected from the aerial image as listed in Table 1. These training data were designated 
as the areas of inscribed circles. Figure 2 shows samples of training data for the collapsed 
buildings. 
 

Edge Intensity, Its Variance and Direction 
 
 Edge intensity (Ei), its variance (Ev) and a ratio of predominant direction of edge 
intensity (Ed) were derived from a Prewitt filter, to detect the change in density among 
neighboring pixels. The Prewitt filter used to detect edge elements has 3x3 matrices, and can 
calculate edge intensities of eight directions (Takagi and Shimoda 1991). We enlarged this filter 
to a 7x7 matrix (Aoki et al. 2001), because densities of neighboring pixels have gentle slopes in 
images taken by television cameras. Ei was obtained from the maximum value in the templates 
for eight directions on edge. An edge direction was defined as the direction of Ei, such as 0-180, 
45-225, 90-270, and 135-315 degrees. Using the Ei value, Ev was calculated as a variance in a  
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Figure 3. Cumulative relative frequency of 
Ei for training data. 
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Figure 4. Cumulative relative frequency of 
Ev for training data. 
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Figure 5. Cumulative relative frequency of 
Ed for training data. 



7x7 pixel window. Also, the ratio of the predominant direction of edge elements in a 7x7 pixel 
window, Ed, was calculated. Figures 3, 4 and 5 show cumulative relative frequencies of Ei, Ev 
and Ed, respectively, for each set of training data. The roofs of undamaged buildings, (c2-c4) 
including many of the non-edge areas, consist of extremely small values of Ei and Ev. The 
exterior walls of undamaged buildings (c5, c6) have stronger edge elements than other training 
data, due to attachments such as balconies, windows, and outlines of buildings. The distribution 
of Ed of railways (c8) has more pixels with the same edge direction than other training data. In 
the case of collapsed buildings (c1), the distributions of the values for Ei and Ev are broad, and 
the distribution of the value for Ed is similar to that of other training data, excepting railways. 
 

Statistical Textures due to Co-occurrence Matrix 
 
 An occurrence probability P(k, l) means the probability that pixel value l appears in a 
relative position δ =(r,θ ) from a reference pixel whose value is k, where r and θ  of δ  are 
relative distance and direction from the reference pixel, respectively. The occurrence probability 
P(k, l) is calculated for all combinations of pixel values (k, l) against some constant δ . This 
matrix is called a co-occurrence matrix (Takagi and Shimoda 1991), because column k line l in 
the matrix represents a co-occurrence probability of pixel values (k, l). Some of the textures due 
to the co-occurrence matrix are often used to classify land cover in urban areas (Zhang et al. 
2001). In this study, characteristics of the collapsed buildings were investigated with edge 
textures derived from a co-occurrence matrix based on edge intensity, Ei. The cumulative relative 
frequency of the collapsed buildings (c1) was converted to 4-bit data representing a condensed 
edge intensity, cEi, as shown in Figure 6. Figure 7 shows relative frequencies for representative 
training data. By this approach, the same number of pixels for the collapsed buildings in cEi was 
obtained in all digital numbers of 4bits. On the other hand, exterior walls (c5, c6) have strong 
elements in cEi, and some of the other training data, such as blue vinyl canvas sheets (c7), 
asphalt roads and parking lots (c9), and bare ground (c10) contain many weak elements in cEi. 
Using these characteristics, two textures were calculated for the condition of r=1, which 
indicates neighboring pixels around a reference pixel, and four directions of 0-180, 45-225, 90-
270, and 135-315 degrees. Figure 8 is a schematic diagram representing the relationship between 
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Ei for the collapsed buildings, and 
derivation of cEi with 16 grades.



the reference pixel and other neighboring pixels of distance r and direction θ  from the pixel. The 
maximum value for the directions was defined as a representative value of the texture. In 
addition, a 7x7 pixel area was used as the window size for the texture analysis. 
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Equations (1) and (2) describe the angular second moment (Ta) and entropy (Te) of textures, 
respectively. Both textures represent the uniformity of the edge structure in the input 
panchromatic image, but their trends are opposite. If P(k, l) is locally large in the matrix, which 
represents uniform texture, large and small values of Ta and Te are obtained, respectively. As 
mentioned above, training data of the collapsed buildings should consist of the approximately 
same number of pixels among each 16 grades for cEi. Therefore, it can be expected that the 
collapsed buildings have non-uniform textures as expressed by Ta and Te. Figures 9 and 10 show 
cumulative relative frequencies of each set of training data for Ta and Te, respectively. The  
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Figure 9. Cumulative relative frequency of 
Ta for training data. 
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Figure 10. Cumulative relative frequency of 
Te for training data. 
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Figure 8. Relationship between a reference pixel and neighboring pixels with r=1 and 

eight directions. 



collapsed buildings have a large number of pixels representing the lowest range for Ta and the 
highest range for Te, respectively. This means the collapsed buildings show the strongest trends 
of non-uniformity. A slight tendency of non-uniformity is also seen for the exterior walls, 
railways and bare ground. Most roofs (c2-c4) have a uniform component for the edge structure.   
 

Extraction of Pixels of Collapsed Buildings 
 
 The curve of each cumulative relative frequency for the collapsed buildings (c1) shown in 
Figs 3, 4, 5, 9 and 10 was approximated by a regression line based on the cumulative data 
between 20% and 80% of the collapsed buildings. If this line intersected 0% and 100% on the 
graph of the cumulative relative frequency, the threshold value was determined to be the value at 
these intersection points for each characteristic (Aoki 2001). When each threshold value for Ei, 
Ev, Ed, Ta and Te was applied, a ratio of pixels extracted as the collapsed buildings in each 
training data was attained as shown in Figure 11. In both cases of Ei and Ev, most of the pixels of  
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Figure 11. Ratio of pixels extracted for collapsed buildings in each set of training data. 



not only the collapsed buildings but also several sets of training data were extracted, in particular, 
each percentage of pixels extracted as collapsed buildings in blue vinyl canvas sheets (c7), 
railways (c8), asphalt roads and parking lots (c9) and woods (c12) exceeded that of the collapsed 
buildings for Ei. Railways were clearly distinguished from the collapsed buildings by Ed. Using 
each threshold value of Ta and Te, about 40% of the pixels consisting of bare ground were 
extracted, while the ratio of blue vinyl canvas sheets was about 30%. The each value of Ei and Ev, 
when cumulative relative frequency for the bare ground (c10) reached 80% in Ei and Ev, was 
considered as the lower limit of threshold value in Ei and Ev, in order to decrease the ratio of 
extracted pixels of bare ground, as shown in Figs. 3 and 4. On the whole, pixels extracted in the 
training data, except for the collapsed buildings, decreased in comparison with the result 
obtained by the threshold values, which were determined by regression lines of the cumulative 
relative frequencies. Extracted pixels for the roofs of undamaged buildings (c2-c4) disappeared, 
and those on the bare ground and blue vinyl canvas sheets decreased significantly. However, 
percentages of correctly extracted pixels for the collapsed buildings also decreased from 86.9% 
to 48.7% for Ei, and from 85.4% to 61.4% for Ev. Therefore, Ei was not used, but Ev with a 
constrained lower limit of threshold value was used as the parameter to detect building damage. 
Table 2 shows the threshold values for all parameters used in this study. Pixels within the ranges 
of all threshold values were regarded as corresponding to building damage.  
 In this study, accuracies of pixels extracted in combination with not only EvEdTaTe but 
also EvEdTa and EvEdTe, were evaluated by Dpx, as shown in Table 1. Dpx is defined as a 
percentage of extracted pixels in each set of training data, and Dpx of the collapsed buildings was 
between 45% and 50% for the three combinations. Figure 12 shows the transitions of the ratio of 
the extracted pixels in representative training data when four threshold values were combined in 
the order of Ev, Ed, Ta and Te. Based on Ev, it was difficult for the collapsed buildings to be 
distinguished from other objects, such as exterior walls (c5, c6), railways, asphalt roads and 
parking lots, and the bare ground. However, the ratios of the number of pixels extracted as 
collapsed buildings for the other training data, which are not shown in Fig.12, could be  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 2. Threshold values.  

Ev: edge variance 2.0 x 105 - 6.8 x 105

Ed: edge direction 0.30 - 0.60
Ta: angular second moment 0.05 - 0.13
Te: entropy 1.16 - 1.38
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some training data. 



decreased to less than 5%. Adding the condition of Ed, railways were distinguished from the 
collapsed buildings, because the cumulative relative frequency of Ed was significantly different 
from the other imaged objects, as mentioned above. By using Ta and Te, roofs of undamaged 
buildings (c2-c4) were clearly distinguished from the collapsed buildings without correcting 
threshold values such as Ev, and most outlines of undamaged buildings and roads with strong 
edge elements were distinguished from those of collapsed buildings. 
 

Detection of Areas with Building Damage 
 
 The extracted pixels corresponding to the collapsed buildings (c1) were further 
synthesized to decrease surplus pixels and make areas with building damage easy to identify. 
This analysis was introduced to calculate the local density of extracted pixels (Rpx) as in a 
previous study (Aoki 2001). Rpx is defined as the ratio of the pixels extracted by the four 
threshold values versus the number of pixels in a window approximating one building size. 
Windows of 31x31 to 63x63 pixels were selected to be proportional to the resolution of the 
ground surface. Figure 13 shows the cumulative relative frequency of the training data. Next, a 
regression line was derived from the same method as used for obtaining the threshold value on 
edge information, and the threshold value of Rpx was defined as the intersection point between 
the regression line of Rpx for the collapsed buildings and the horizontal axis. In all cases of 
EvEdTaTe, EvEdTa, and EvEdTe, Rpx 30% was derived as the threshold value to distinguish 
between the collapsed buildings and the other imaged objects. A percentage of areas detected as 
the collapsed buildings in all training data is shown as Darea in Table 1. In all cases, correctly 
detected pixels in the collapsed buildings were more than 90%. However, a small number of 
pixels for asphalt roads and parking lots (c9), brown exterior walls (c5), and woods (c12) were 
incorrectly detected by this approach. Therefore, the areas with building damage were estimated 
using EvEdTaTe, because these areas had the least number of incorrect pixels in the three cases. 
Figures 14 and 15 show the results estimated in this study and the results of ground survey and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0%

20%

40%

60%

80%

100%

0% 20% 40% 60%
local density of selected pixels, Rpx

cu
m

ul
at

iv
e 

re
la

tiv
e 

fre
qu

en
cy

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
EvEdTa
EvEdTe

Figure 13. Cumulative relative frequency of Rpx for each set of training data. “EvEdTa” and 
“EvEdTe” are the distributions of c1 in EvEdTa and EvEdTe, respectively. 



visual inspection (Hasegawa 2000), respectively. The black and white areas in Fig.15 represent 
the collapsed and the severely damaged buildings, respectively. In the dotted circle, the blue vinyl 
canvas sheets are covered with parts of the damaged buildings. Most of the building debris was 
detected correctly, although pedestrian crossings, cars and parts of exterior walls were incorrectly 
detected as collapsed buildings. Figures 16 and 17 show the result of this method applied to the 
adjacent image and the distribution of severely damaged buildings due to ground survey and 
visual inspection, respectively. The distribution of the detected area shown in Figure 16 roughly 
agreed with that in Figure 17. These results indicate that it may be possible to apply the method 
based only on edge information from a sample image to several similar images spanning large 
areas. 
 

Conclusions 
 
 The analysis of areas containing collapsed buildings was conducted using panchromatic 
aerial images taken from a helicopter. The characteristics of collapsed buildings were examined 
based on edge information of aerial images, such as the variance of edge intensity, the ratio of the 
predominant edge direction, and two textures based on the co-occurrence matrix of edge intensity. 
The threshold value was determined by the cumulative relative frequency of the collapsed 
buildings in terms of edge information, and was combined in order to detect the pixels  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16. Result of application of the 

threshold value for Fig.14 to an 
adjacent image. 

 
Figure 15. Distributions of collapsed and 

severely damaged buildings in 
Fig.14 by ground survey.
 
Figure 17. Distributions of collapsed and 

severely damaged buildings in 
Fig.16 by ground survey.
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Result of estimated areas with 

building damage based on 
EvEdTaTe and Rpx30%. 



representing collapsed buildings. The collapsed areas of buildings were roughly detected by this 
approach, and these threshold values were applied to an adjacent image. In order to further 
improve the technique for automated damage detection, we will examine the texture analysis 
procedure using the co-occurrence matrix, such as appropriate sizes of the matrix, the pixel 
window, and other textures instead of angular second moment and entropy. 
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