
 
 

1 INTRODUCTION  

As the population in cities continually increases, 
road traffic becomes more congested than the level 
which city and infrastructure planning expects. As 
the first step to solve the problem, monitoring 
vehicles must be the important task. Normally, the 
field-based equipment, like cameras installed at 
fixed locations or weigh-in motion sensors on the 
pavements, are used to monitor road traffic. 
Presently remote sensing technique has been 
emerged as another option to collect the traffic 
information. Using this way, the wider range of 
information can be collected over a long time. Thus, 
vehicle detection by remote sensing can be 
extensively used to manage traffic, assess fuel 
demand, estimate automobile emission and also 
important for transportation infrastructure planning. 

There have been several researches on vehicle 
detection using remote sensing data. They can be 
categorized into two groups: model-based extraction 
and data-based extraction. Model-based extraction is 
based on the vehicle models built from a learning 
process. Then the models are used to identify 
whether the target is a vehicle or not. For example, 
Gerhardinger et al. (2005) tested an automated 
vehicle extraction approach based on an inductive 
learning technique, which was implemented using 
Features Analyst, an add-in extension of ArcGIS 
software. Zhao & Nevatia (2001) combined the 

multiple features of vehicles in a Bayesians network 
for leaning prior to detecting vehicles.  

In data-based extraction, the processing follows a 
bottom-up procedure to group pixels into objects and 
the vehicle objects are subsequently discriminated 
from the others. Hong & Zhang (2006) used an 
object-oriented image processing technique to 
extract vehicles. A detailed description, which 
requires a large number of models to cover all types 
of vehicles, is the key of the former approach. It 
takes time and cannot be widely applied. The latter 
is simpler and convenient to be widely used. Those 
recent researches mainly reported on the position of 
vehicles, and few of them went to speed detection as 
well as created a traffic information database.  

It is known that the panchromatic (PAN) and 
multi-spectral (MS) sensors of QuikBird have a 
slight time lag, about 0.2 seconds, depending on the 
scanning mode of the instrument. Using this time lag 
between the two sensors of one scene, the speed of 
moving objects can be detected (Etaya et al. 2004, 
Xiong & Zhang 2006). The speed of vehicles can 
also be detected from aerial images. Aerial images 
are often taken along a flight line with an overlap 
among adjacent scenes. If a moving object captured 
in a scene is also captured in an adjacent image, the 
speed of the object can be detected. 

In this research, a new method is developed for 
both vehicle extraction and speed detection. From 
high resolution aerial images, vehicles can be 
extracted by an object-based method. Then speed is 
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detected by matching the results of vehicle 
extraction from two consecutive images. Since the 
resolution of QuikBird’s MS image is not high 
enough to extract vehicles directly, an area 
correlation approach is introduced to search the best 
match position with the result of vehicle extraction 
from the PAN image. Then speed is detected by the 
distance of the vehicle’s location in the PAN and 
MS images. The proposed approach is tested on both 
QuikBird and simulated QuikBird images. 

2 MOVING OBJECTS IN QUICKBIRD IMAGE 

Google Earth (http://earth.google.com/) recently 
provides high resolution optical images of urban 
areas, either from aerial images or pansharpened 
(PAN) QB images. For one scene, a PAN image can 
be produced by co-registering a PAN image and a 
MS image. But due to the slight time lag (about 0.2 
sec) between a pair of PAN and MS images, the 
locations of moving objects displace after the short 
time interval. Even if the PAN and MS bands have 
been co-registered for still objects like roads and 
buildings, they cannot be co-registered for moving 
objects. 

The time lag between the PAN and MS sensors of 
QB was investigated using bundle products of QB. 
Figure 1 shows the time lag for 36 scenes, which we 
have at hand. These images were taken for various 
parts of the world, e.g. Japan, USA, Peru, Thailand, 
Indonesia, Morocco, Iran, Turkey, Algeria, from 
March 2002 to July 2006. The time lag is either 
about 0.20 seconds or about 0.23 seconds. 

Figure 2 shows a part of Ninoy Aquino 
International Airport, Metro Manila, Philippines, 
from Google Earth. Two airplanes are seen on the 
runway. The right plane is just at the moment of 
landing and the left one is standing still and waiting 
for take-off. A “ghost” is only seen in front of the 
moving airplane. Similar ghosts were observed in 
several airports in the world such as Narita/Tokyo 
International (Japan), Bangkok International 
(Thailand), and Hong Kong International. These 
ghosts were produced due to the time lag between 
the PAN and MS sensors of QB. The distance 
between the ghost and the airplane is about 18.1m in 
Figure 2. The speed of the airplane is evaluated as 
326 km/h, assuming the time lag as 0.2 seconds. 

This kind of ghosts are also seen in front of other 
moving objects, like trains, automobiles, ships, but 
due to limitation of the image resolution and the 
short time lag, ghosts are not so clear as those for 
airplanes. We simulated a higher resolution 
pansharpened image of an expressway with 0.25m 
resolution from an aerial image. By this resolution, 
the ghosts resulting from the time lag between PAN 
and MS sensors were clearly seen in front of moving 
vehicles. 

Since the spatial resolution of a QuickBird multi-
spectral image is 2.4m, rather coarse to figure out 
small cars, measuring the speed for smaller and 
slower objects is not so accurate. A part of QB 
image of central Bangkok, Thailand, was used to 
detect vehicle speed visually. Comparing the 
location of cars on the road in the PAN and MS 
images with 0.20s time lag, the speed and moving 
direction of the vehicles can be evaluated as arrows 

Figure 1. Time lag between the PAN and MS sensors of QB for 

36 scenes in the world. 

Figure 2. A ghost is generated in front of the just landing air-

plane in a pansharpened QuickBird image from Google Earth.

Figure 3. Result of visual detection of vehicle speed from the 

QB bundle product for central Bangkok, Thailand. The length 

of arrow represents the speed of vehicles. 
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in Figure 3. In this investigation, we encountered 
some difficulty to locate vehicles in the MS image 
with 2.4m resolution. The result of visual detection 
also contains subjectivity and uncertainty. Thus, an 
automated detection method is sought. 

3 OBJECT-BASED VEHICLE EXTRACTION 

To detect the speed of a moving vehicle, the location 
of the vehicle in two images with a time lag is 
needed. From a QuickBird PAN image or an aerial 
image, a vehicle has a clear shape and can be easily 
extracted visually. Thus, we propose an automated 
object-based method to extract vehicles from high 
resolution remote sensing images and to record the 
information on a traffic database in this study. The 
procedure is tested using digital aerial images. 

3.1 Study area and data used 
The study area is located in Minato-ku, a central part 
of Tokyo, Japan. Two pairs of consecutive aerial 
images are used in this study. The images were 
taken by a digital aerial camera UltraCamD (Leberl 
& Gruberl 2003) on August 4, 2006, by 
Geographical Survey Institute of Japan.  

The UltraCamD (UCD) offers simultaneous 
sensing of high-resolution panchromatic channel 
(pixel size is 9µm) as well as lower-resolution RGB 
and NIR channels (pixel size is 28µm). It has the 
ability to capture images with higher overlap, up to 
90%, in the along track direction. 

A panchromatic image has 7,500×11,500 pixels 
and a multi-spectral image 2,400×3,680 pixels. One 
image pair covers the area near Hamazakibashi 
Junction and another pair covers the area of 
Roppongi. Color images with resolution of about 
0.12 m/pixel, obtained through a pansharpening 
process, were used in this study. Since the PAN 
image and MS image by UCD camera were taken at 
the same time, the “ghost” does not appear in the 
pansharpened image. Note that the two consecutive 
images have an overlap of about 80% (Figure 4). 

3.2 Methodology 
Since vehicles are moving on roads, road extraction 
should be the first processing step. Focusing on the 
extraction of vehicles and the detection of their 
speeds, we do not propose a new road extraction 
method. There have been a number of researches on 
road extraction from remote sensing images 
(Quackenbush 2004). Those can be easily employed 
to extract road objects here. Additionally, GIS road 
data can also be used to extract roads. However, to 
avoid errors involved in road extraction, which 
influences the final vehicle extraction results, the 

roads are extracted manually in this study. Then the 
areas out of the road areas are masked. 

Prior to carrying out vehicle extraction, other 
irrelevant information such as lines on the road 
surface should be removed. Concerning the shapes 
and sizes of the objects, area morphological filtering 
was employed (Vu et al. 2005). This filter perfectly 
removes long and thin road lines and retains the 
shapes of vehicles. The window size used here was 
set as 5×5. 

Since the vehicle extraction is based on the gray 
value, color images were converted to black-and-
white images. The flowchart of the object-based 
vehicle extraction approach is shown in Figure 5.  

Pixels were scanned and grouped into objects 
according to the criteria of the gray value. In this 
step, the image represents 4 kinds of objects: 
background, roads, vehicles (including their 
shadows) and the others treated as noise. The road 
extraction step assigns the background as black 
color. It can be easily discriminated by the lowest 
range of the gray value. Meanwhile, the road 

Figure 4. Two consecutive digital aerial images of Roppongi,

Tokyo, with about 80% overlap. 

Parameters
Result (label)

Figure 5. Flowchart of automated vehicle extraction 
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surfaces normally show another specific range of the 
gray value. Based on those two gray value ranges, 
the objects are formed. There might be vehicles 
which show very similar characteristics with the 
black background. Fortunately, the background and 
the road are often big objects compared to the 
others. Then, these two kinds of objects can easily 
be extracted based on a size threshold.  

The remaining pixels are reformed into objects 
again based on a local threshold of the gray value. 
The fact is that all the pixels belonging to a vehicle 
should have a similar gray value. Vehicles and their 
associated shadows generally have a specific range 
of size. It is the criteria to distinguish them from the 
others. Consequently, the initially extracted result 
was obtained, and the information on the vehicle 
position and size was stored in a database. The 
parameters of the value range and the object size 
were examined several times till the best result was 
obtained. 

3.3 Experiment and result 
The target of extraction is the vehicles on the 
expressway in the two study areas. As the result, the 
vehicles with light color were presented in white and 
the shadows or dark vehicles were extracted as gray 
(Figure 6). Additionally, the information of vehicle 
positions and sizes was stored in a database for 
speed detection. Then the results were compared 
with visual extraction results (Table 1). 

There were 292 vehicles in the pair images of 
Hamazakibashi area, and 282 vehicles were 
extracted correctly by the process of vehicle 
extraction. Only 10 vehicles were missed, and the 
noises which are not vehicles but extracted as 
vehicles were 116. The producer accuracy is 96.5%, 
and the user accuracy is 71%. 

In the image pair of Roppongi, 195 vehicles and 
191 vehicles, respectively, were extracted correctly. 
Four vehicles were missed, and noises were 42. 
Thus, the producer accuracy of these images is 98%, 
and the user accuracy is 82%. 

Overall, almost all the vehicle could be 
extracted. Not only light-color vehicles but also dark 
vehicles and some vehicles in shadow were 
extracted successfully. Because we extracted both 
vehicles and shadows, even the vehicle’s gray value 
is similar to that of the road, the vehicle can be 
extracted by its associated shadow. There still exist a 
few commission errors due to a signboard, its 
shadow, and some lines on the road. The 
environmental condition around the target area 
influences the result of vehicle extraction. Accuracy 
gets higher as an environment becomes simpler. 

4 SUB-PIXEL LEVEL VEHICLE EXTRACTION 

From PAN images with 0.6m resolution, vehicles 
could be extracted by the object-based approach. But 
the resolution of MS images is about 2.4m, a vehicle 
appears in about only 1 or 2 pixels. Most vehicle 
pixels were mixed with roads, and it is difficult to 
extract the accurate edge and position of vehicles. 
The proposed object-based approach could not 
extract vehicles from MS images. To detect the 
speed of vehicles, the shift of the location in the 
PAN and MS images is needed. Thus, an area 
correlation method is proposed to estimate the 
location of vehicles from a MS image in a sub-pixel 
level. 

4.1 Methodology 
Area correlation is a method for designating Ground 
Control Point (GCP) in image-to-image registration 
(Schowengerdt 1997). A small window of pixels 
(template) from the image to be registered is 
statistically compared within a region of the 
reference image, which is bigger than the template 
image. From the distorted images, templates of M 
rows by N columns are selected. A bigger size 
window is selected for the reference image. The 
template is overlaid on the reference image and a 

Figure 6. Original aerial image (up) and result of vehicle de-

tection (down) 

Table 1. Accuracy of object-based vehicle extraction 

Image Hamazakibashi Roppongi

Vehicles in image 292 195
Extract result 398 233

Correctly extracted 282 191

Omission 10 4
Commission 116 42

Producer accuracy 97% 98%

User accuracy 71% 82%
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similarity index is calculated. This procedure is 
carried out for every possible position in the 
reference image and the similarity matrix is 
obtained. The content of the similarity matrix is the 
value of the statistical comparison between the 
template and the reference image. The position in 
the similarity matrix where the similarity index is 
the maximum represents the necessary offset that the 
template has to move horizontally and vertically to 
match the reference image. This process is shown in 
Figure 7. Note that if there is a relative rotation 
between the template and the reference image, a 
rotational angle should be introduced for matching. 

One of the similarity indexes is the cross-
correlation coefficient between the template and the 
reference images (Eq. 1). The cross-correlation 
coefficient is a scalar quantity in the interval [-1.0, 
1.0]. The cross-correlation coefficient can be used as 
a similarity index since it gives a measure of the 
degree of correspondence between the reference and 
the template or can be seen as a coefficient that is a 
direct measure of how well two sample populations 
vary jointly (Brown 1992). 
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First, a vehicle is extracted from PAN image with 

0.6m resolution by the object-based approach. A 
database is obtained after vehicle extraction with the 
information of vehicle location. Using the location 
information, a vehicle and the surrounding road is 
selected as a template. Since the time lag between 
PAN and MS images is 0.2s, the maximum moving 
distance is about 7m (when the maximum speed is 
120km/h). The reference image is selected with the 
same center as the template but 7m bigger than that 
in the two directions. The cross-correlation 
coefficient between the two areas is calculated by 
sliding the template over the reference image, 
multiplying the two arrays pixel by pixel. The point 
of maximum correlation indicates the position of the 
vehicle in the MS image with the highest 
probability. To raise the accuracy of correlation, the 
template and the reference image are transformed to 
0.24m/pixel by cubic convolution. Then the template 
and the reference image can be matched in a sub-
pixel level. 

4.2 Experiment and result 
One QB scene with the PAN and MS bands covering 
the central Bangkok, Thailand was used to test the 
area correlation method for vehicle extraction.  

Since the MS image has 4 bands as R, G, B and 
Near-Infrared, it needs to be transformed to one 
band image before the area correlation analysis. The 
Principal Component Analysis (PCA) was employed 
to transform a MS image to a new 4 band image. 
The first component image with the highest variance 
was used to calculate the cross-correlation 
coefficient with the PAN image. 

A vehicle in the MS image was mixed with the 
road. Thus, the template selected from the Pan 
image includes not only a vehicle but also road 
around it. Then a bigger reference image was 
selected around the location of the template from the 
MS image (Figure 8). The cross-correlation 
coefficient of each shift was calculated as a matrix, 
shown in Figure 9. The location of the maximum 
correlation (8, 14) is the upper left point of the 
template in the reference image. 

From the PAN image, several vehicle templates 
were selected and they were statistically compared 
with the reference area extracted from the MS 
image. Comparing the results visually, the vehicle 
templates were accurately matched with the 
reference extracted from the MS image. But it is 
difficult to access the accuracy of sub-pixel level 
vehicle extraction only by visual comparison. Thus, 
simulation was carried out to verify the accuracy. 

The digital aerial images used in the previous 
section, were employed to the simulation. Since the 
time lag between the two consecutive aerial images 
is about 3s, the shift of a vehicle is large. Thus, we 

Figure 7. Shifting template overlaid reference image, and the

correlation matrix is calculated by each shift.  
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selected the templates of vehicles and the reference 
images manually. The reference image selected from 
the second image should include the target vehicle 
and the surrounding road. To compare with the 
QuickBird study, the pixel size of the original PAN 
images were also resized from 0.12m to 0.24m. The 
template from the first PAN image was overlapped 
on the reference image extracted from the second 
PAN image. The cross-correlation matrix obtained is 

shown in Figure 10 (left). Since the digital aerial 
images are high spatial resolution, the result is 
considered to be accurate. The upper left point in the 
template is located at (22, 14) in the reference 
image. 

Then the resolution of the PAN image from the 
first aerial image was converted to 0.6m/pixel, 
simulating a PAN image of QuickBird. The 
resolution of the MS image from the second aerial 
image was also converted to 2.4m/pixel, simulating 
a MS image of QuickBird. The first component of 
the MS PCA image was used to calculate the cross-
correlation matrix with the simulated PAN image. 
To register the two images in a sub-pixel level, the 
pixel sizes of the two images were resized to 0.24m. 
The template and the reference image were selected 
from the simulated PAN and MS images, the same 
location with the original high-resolution data. The 
cross-correlation matrix was obtained by shifting the 
simulated PAN image over the MS image. The result 
is shown in Figure 10 (right), where the upper left 
point of the template locates at (23, 12) in the 
reference image. This location represent the most 
probable position of the vehicle object in the MS 
image. 

Comparing the result with the original data, the 
standard deviation of the difference to the x-axis is 

First component of the MS PCA image with 2.4m resolution

Figure 9. Cross-correlation matrix obtained by shifting the

template over the reference image. 

Figure 8. Template selected from the PAN image (orange) and

reference image selected from the MS PCA image (red) 

PAN image with 0.6m resolution 

Figure 10. Comparison of the cross-correlation matrix for the 

0.24m resolution image (left) and that for the simulated QB 

image (right). 

Figure 11. Difference between the extracted results and the ref-

erence data to the x-axis and y-axis 
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about 2 pixels (0.48m), and that to the y-axis is 
about 3 pixels (0.72m), as shown in Figure 11. Since 
the width of vehicles is less than 2.4m, the 
difference in width is bigger due to a mixed-pixel 
effect. However, the area correlation method could 
still extract a vehicle from a MS image with 2.4m 
resolution in a sub-pixel level. 

5 SPEED DETECTION 

Speed detection uses the time lag between two 
images. Generally, it can be performed using two 
consecutive aerial images or one scene of QuickBird 
image. The proposed vehicle extraction approach 
can be extended to speed detection. 
 

5.1 Speed detection from aerial images 
The vehicle and shadow database of each image was 
developed after the object-based vehicle extraction 
process from the aerial images of Tokyo. Then, the 
vehicles in the two databases (two time instants) 
were linked by the order, moving direction, size and 
distance. If a vehicle in the second image is in the 
range of the possible distance from the one in the 
first image and if they have a similar size, they are 
linked as the same vehicle. Subsequently, using their 
positions stored in the databases, the speed can be 
computed. 

To detect the speed of vehicles, two images, 
covering the same area with a time lag, are needed. 
Firstly, an overlap area from two consecutive images 
was extracted to obtain two images over the same 
area. Because of the perspective projection of an 
aerial camera, geometric distortions between two 
images exist. Hence registration for the pairs of 
images was conducted using 8 ground control 
points. After registration, the two images in a pair 
have different pixel sizes. Thus the images were 
arranged to the same pixel size by image mosaicing. 

Visual speed detection was first carried out to 
obtain reference data by overlapping the second 
image to the first one. The speed can be detected by 
measuring the difference of vehicle’s outline, as 
shown in Figure 12.  

Then the speed and moving direction of vehicles 
were detected automatically by matching the 
databases for the two consecutive images using the 
parameters of order, direction, size and distance 
(Figure 13). About 71% of vehicles’ speeds were 
detected automatically for the Roppongi area. The 
standard deviation for the difference of speed 
between the automated and visual detections is 
0.83km/h, and the standard deviation for the 
difference of direction is 0.38 degrees. 

For the Hamazakibashi area, only a part of 
images were used for speed detection since the 
accuracy of vehicle extraction was low (71%). 

Vehicle matching depends on the order of vehicles, 
and matching error occurs when many noises 
influencing the order of vehicles exist. From the part 
of the images, 64% of vehicle speeds were extracted. 

Figure 14. Result of automated speed detection from two con-

secutive aerial images of Roppongi. 

Figure 13. Condition of matching the same vehicle 

Figure 12. Visual speed detection by overlapping two images 

Figure 15. Comparison of visual detection (yellow and blue ar-

rows) and the sub-pixel based automated detection (red arrows)

for the QB image of Bangkok. 

1105



 
 

The standard deviation for the difference of speed 
between the automated and visual detections is 
1.01km/h, and the standard deviation for the 
difference of direction is 0.59 degrees. 

Since the rules for vehicle matching are very 
severe, not all the vehicles could be matched from 
the image pairs. The order changes by noise, and the 
size changes in vehicle extraction are the main 
reasons for matching error. But the result of speed 
detection for the matched vehicles showed high 
accuracy. 

5.2 Speed detection from QuickBird 
The location of vehicles in a QB’s PAN image can 
be extracted by the object-based method. By shifting 
the template of a vehicle extracted from the PAN 
image over the MS image of the same scene, the 
most possible location of a vehicle in the MS image 
can be obtained. Then speed of vehicles is computed 
by the location change between the PAN and MS 
images with the time lag about 0.2s. 

From the QuickBird image of central Bangkok, 
vehicles were extracted and their speeds were 
calculated, as shown in Figure 15. Comparing with 
the result of visual detection, the moving direction of 
vehicles looks better than the visual detection result, 
but still has some errors to the transverse direction of 
the road due to the mix-pixel effect. 

6 CONCLUSIONS 

Methods to extract moving vehicles and measure 
their speeds from high-resolution satellite images 
and aerial images were proposed. First, an object-
based approach was employed to extract vehicles on 
an expressway automatically from high-resolution 
remote sensing images, such as by digital aerial 
cameras. The method was applied to two 
consecutive aerial images of central Tokyo. 
Comparing the location of extracted corresponding 
vehicles in the image pair, the speed and azimuth 
direction of moving vehicles were obtained with 
high accuracy. 

From Google Earth, “ghosts” of moving objects 
in pansharpened QuickBird images were 
demonstrated. The slight time lag, about 0.2s, 
between panchromatic and multispectral sensors of 
QuickBird was shown to be responsible for the ghost 
and they can be used to measure the speeds of 
moving objects using only one scene of QuickBird’s 
“bundle product”. Due to limitation of the short time 
lag and the resolution (2.4m for MS bands), high 
accuracy cannot be expected by visual inspection. 

An area correlation method to detect the accurate 
vehicles’ location from 2.4m MS image in a sub-
pixel level was also proposed. A template including 
vehicle was selected from a PAN image, and a 

reference image was selected from a MS image. 
From the cross-correlation matrix, the position of the 
maximum correlation could be obtained. The test 
result showed that vehicles were detected with a 
sub-pixel level accuracy (1/3 pixel of the MS 
image). 

The accuracy of vehicle extraction and speed 
detection from QuickBird will be improved by 
introducing a rotation between PAN and MS images 
to the area correlation method.  

The result of this study is useful for better 
understanding the traffic dynamics. Images of a 
large road network can, for instance, be used to 
acquire information from a whole region at one time. 
Such a snapshot of the entire network can give more 
insights into the distribution of vehicles in a region, 
and can also provide valuable information for areas 
not covered by traditional traffic counters.  
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