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ABSTRACT: 
 
As the spatial resolution of satellite images has been constantly improved, it is possible to quickly capture a detailed damage map 
after a catastrophe using remote sensing techniques. The commercialisation of very high spatial resolution (VHR) satellite images 
such as IKONOS and QuickBird especially allows the detection of individual buildings or a block of buildings. However, a better 
spatial resolution image requires a more complicated processing. A VHR image possesses much more information than a coarser one. 
Pixel-based and texture-based methods, which are successfully used for coarse spatial resolution images, show certain limitation in 
processing VHR satellite images. Currently, visual interpretation of VHR images for building damage detection is the most reliable 
method. This manner is obviously time-consuming and requires experienced interpreters. 
 
To ease the task, this study tries to develop a more automated interpretation method. Scale-space is generated based on the theory of 
area morphology to analyse the spectral information in a morphological framework. Across the scale-space, the processing mimics 
the human perception by moving upwards from a coarse scale to finer ones and comparing between the pre-event and post-event 
images. Non-damaged buildings are extracted firstly and the results infer the damage ones. A pair of QuickBird scenes acquired over 
the city of Boumerdes, which was one of the most heavily-damaged areas due to the Algeria earthquake on May 21, 2003, and a pair 
of QuickBird scenes acquired over the city of Bam, Iran, which was damaged due to the Iran earthquake on December 26, 2003, are 
used for demonstration of the method. Both cases, i.e. dense distribution of buildings in Bam city and sparse distribution of buildings 
in Boumerdes show the successful extraction of damaged buildings. It proves that the proposed method is very promising to be 
widely employed. More analyses to categorise the damaged buildings to a suitable damage scale and implementation of the method 
will be conducted in a future study. 
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1. INTRODUCTION 

For decades, remote sensing techniques have played an 
important role in disaster damage assessment. Providing the 
geo-spatial data over a large area, they are the most capable 
technique used in post-disaster response, especially for the 
hard-hit and difficult-to-access areas. Recent catastrophes have 
been observed and captured by various remote sensors on 
different space-borne or airborne platforms. It triggers a great 
employment of remote sensing techniques in post-disaster 
response. Focusing on the employment of remote sensing in 
earthquake damage detection, many researches and 
implementations have been carried out after several recent big 
earthquakes such as the 1995 Kobe, Japan earthquake 
(Matsuoka and Yamazaki, 1999), the 1999 Kocaeli, Turkey 
earthquake (Eguchi et al. 2000; Estrada et al. 2000), the 2001 
Gujarat, India earthquake (Mitomi et al. 2001; Saito et al. 2004), 
the 2003 Bam, Iran earthquake (Vu et al. 2005; Yamazaki et al. 
2005). Either optical or radar, images at different resolutions 
have been used. The availability of higher resolution images 
these days allows the interpretation of damage scale of each 
building block or even each individual building rather than 
overall damage distribution and damage extent. Both visual and 

automated interpretations are used to derive the damage 
information from remotely sensed images. 
 
At the lowest level of processing, image processing deals with 
pixels. Each pixel possesses the grey value which represents the 
spectral reflectance at its location. Based on that, a vast amount 
of “pixel-based” algorithms were developed. “Texture-based” 
algorithms are higher level of processing, which analyse 
different kinds of relationship among the neighbours of each 
pixel. These two types of processing have been successfully 
used for coarse resolution images like Landsat and ERS 
(Matsuoka and Yamazaki, 1999; Eguchi et al., 2000; Estrada et 
al., 2000). The reason is that coarse images do not provide 
detailed information. A pixel itself might be a mixture of 
different objects. Therefore, pixel or texture information is the 
reasonable cue for the detection and extraction of damage 
extent and distribution. Airborne-based images and very high 
resolution (VHR) satellite images such as QuickBird and 
IKONOS, which provide highly detailed information, require 
much more complicated processing. Those pixel-based and 
texture-based methods developed could be used with airborne-
based images (Mitomi et al. 2001) and VHR satellite images 
(Vu et al. 2005). However, it was unable to exploit all 



 

possessed information in a high resolution image. The visual 
interpretation, which obviously is time-consuming and requires 
experienced interpreters, has been a more reliable method 
(Yamazaki et al. 2005). To automate the interpretation, “object-
based” image processing should be developed. 
 
Objects presented on an image possess the scale property. 
Exploitation of scale in image processing, in fact, mimics the 
human perception. Human perception ignores the details and 
groups the pixels into an object at a specific scale of 
observation. Linear scale-space has been well-developed in 
feature extraction and visualisation (Lindeberg, 1993). To 
overcome the distortion problem at a coarser scale by the linear 
scale-space, which generates difficulty in linking across the 
scale-space, non-linear scale space is proposed. Non-linear 
scale space keeps the main properties of a scale-space like 
luminance conservation, geometry, or morphology (Petrovic et 
al. 2004). Generally, it performs a partition of an image into 
isolevel sets at each scale and links them with the closest one in 
the next scale. The proposed method presented in this paper 
employs area morphology (Vincent, 1992) to construct the 
nonlinear scale-space. Its theory is presented in Section 2. A 
newly proposed damage detection method is introduced in 
Section 3. It is followed by two tests with QuickBird images 
(Section 4) and conclusion, discussion of further developments 
(Section 5). 
 
 

2. AREA MORPHOLOGICAL FILTERING 

As introduced by Vincent (1992), area opening filtering 
removes the components with area smaller than a parameter s 
from a binary image. Similarly, area closing filtering fills the 
holes with area smaller than a parameter s. The binary area 
opening is defined as follows; Let set X is a subset of set M ⊆ 
R2 and {Xi} is all the connected components of X. The area 
opening of parameter s (s ≥ 0) of X is the union of the 
connected components of X with an area greater than s: 
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The area closing of parameter s (s ≥ 0) of X is then defined as: 
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where XC denotes the complement of X in M. 
 
Vincent (1992) then extended the definition of binary area 
opening or closing to greyscale area opening or closing. A 
greyscale image can be defined as a mapping RMf →: .  
 
The greyscale opening of f is given by: 
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where ∨ stands for supermum, i.e. a lowest upper bound, and Th 
is the threshold of f at value h. 

{ }hxfMxfTh ≥∈= )(|)(    (4) 
 
In other words, the image M is firstly threshold with all the 

possible h and the binary opening ))(( fTh
a
sγ is found. 

Subsequently, ∨ is applied to all the recently 

found ))(( fTh
a
sγ . It is similarly extended to greyscale 

closing by duality. Area morphological filtering does not 
depend on the shape of structural elements as the conventional 

ones. Therefore, it can effectively remove noise and 
simultaneously retain thin or elongated objects. 
 
 

3. DAMAGE DETECTION METHOD 

There are currently two damaged building detection 
approaches: solely use the post-event image or detect the 
changes between the pre-event and post-event images. The 
former like Mitomi et al. (2001) detects building damage 
through the distribution of edges of buildings and/or debris. 
Such methods can detect only the location of the damage. Till 
now, there is no detailed report on the relationship between the 
detected indexes and the damage levels. The latter like Estrada 
et al. (2000) follows the scheme of change detection. More 
information about the damage can be expected. However, the 
seasonal or man-made changes must be excluded afterwards. To 
detect more detailed damage information, our proposed method 
follows the second approach. Damage detection is interpreted 
through the changes of building objects. The building objects 
are firstly extracted from both the pre-event and post-event 
images across the scale-space prior to the comparison. The 
scale-space is generated based on area morphology (Section 2) 
as described in the following sub-section. 
 
3.1 Scale space 

Applying area opening followed by area closing with a 
parameter s, named AOC operator, on an image is hence, like 
flattening this image by parameter s. This performance 
segments an image into the flat zones of similar intensity or 
isolevel sets, in other words. Therefore, a scale-space can be 
generated by iteratively applying AOC with increasing s. The 
desirable properties of a scale space like fidelity, causality, 
Euclidean invariance, are hold by AOC scale-space (Acton and 
Mukherjee, 2000). Theoretically, the scale-space is generated 
by an infinite number of scales. For the discrete dimension of 
an image, the number of scales increases one each as a window 
(area) size increases from one pixel to an image size. However, 
it is time-consuming to concern all the area values. Practically, 
a scene contains a limited number of sizes. Horizontal and 
vertical granulometry analyses (Vincent, 1994) are carried out 
to find the potential patterns contained in an image. The local 
maximum found in horizontal and vertical dimensions can be 
used to compute the possible areas of objects in the image.  
 
Across the scale space from a coarse scale to finer ones, an 
object is created and split. To extract the objects from the scale-
space of a greyscale image, the linking trees of objects must be 
formed across the scale-space. On each scale, an object might 
have its parent on previous coarser scale and its children on 
next finer scale. The similarity of object’s intensity is the 
criterion to determine the hierarchical relationship. If an 
object’s intensity is much different from that of the big object 
which it falls into, the scale on which it is created is the root of 
the linking tree. Subsequently, an object can be extracted on its 
root scale along with its associated linking tree.  
 
Figure 1 demonstrates the idea of linking object across the 
scale-space. Let assume that we are considering three-level 
scale-space with S1 the coarsest and S3 is the finest. On the 
current scale S2, there are two newly created objects named A 
and B. While A has similar intensity to the bigger one at scale 
S1, B has different intensity. As a result, B can be extracted on 
this scale S2 with its two-level tree and A is associated with its 
father on S1 and two children on S3 to form a three-level tree. 



 

 

 
Figure 1. Objects linking across the scale space. 

 
3.2 Damage detection 

Practically, multi-spectral images are used rather than greyscale 
ones. The scale-space scheme presented above for greyscale 
images is applied to each band. The area parameters can be 
derived by granulometry analysing the first component of 
Principle Component Analysis (PCA). Subsequently, the 
spectral signatures are grouped and assigned the class indexes 
by K-mean clustering (Tou and Gonzalez, 1974). Figure 2 
illustrates the results of clustering on 3 scales, s = 50, 200 and 
1000 associated with the original true colour composite (TCC) 
image (Figure 2a) for reference. A relational database is 
generated to link the class indexes across the scale-space to 
linguistic variables which represent the land-cover types such as 
water body, vegetation, shadow, building roof, etc. This 
database will be used in the process of linking and segmentation 
of the objects across the scale-space. 
 

 
Figure 2. a) Original TCC image and the results of K-mean 

clustering on scales b) s = 50, c) s = 200 and d) s = 
1000. 

 
All objects are linked and the relationships are stored in a new 
database. However, focusing on building features, other classes 
can be ignored in the extraction. The linking is started at the 
finest scale. The attributes of each object are  
• SCALE: the current scale in which it exists, 
• ID: the identified number on the current scale, 
• AREA: object’s area, 
• X0, Y0: image coordinates of the starting point of an object, 

• X, Y: image coordinates of the centroid; this point will be 
shifted to an arbitrary location inside the object if it is concave, 
• SHAPE: to indicate the object is convex or concave, 
• SPECTRAL: spectral class, 
• SUPERID: the identified number of the object’s father on the 
next coarser scale, this number equals 0 if the scale is the root 
of this object. 
 
The criterion to determine the relationship between an object 
and its potential father is the spectral class. Subsequently, a 
building can be extracted on its root scale. Figure 3 shows the 
extracted buildings from a portion of the post-event image 
acquired over Bam city, Iran. Three coarsest scales are used for 
demonstration. Three scales s = 200, 500 and 2000 are 
combined in Red, Green and Blue channels, respectively. 
Obviously, it shows the retained buildings after the earthquake. 
 

 
Figure 3. a) Original TCC image and b) extracted results on 

scales s = 200 (Red), s = 500 (Green) and s = 1000 
(Blue). 

 
Building objects extracted from the pre-event and post-event 
images are compared to find out damage. Currently, the 
development of the method has been reached the step of finding 
the exact location of the collapsed buildings. It is inferred by 
logical comparison on the existence of building objects before 
and after a catastrophe. It should be noted that the extraction of 
a building object is actually the extraction of its roof. The 
looking angles of the sensors when capturing the pre-event and 
post-event images might be different. As a result, the buildings 
lean to different directions in comparison between the pre-event 
and post-event images. To compare the existence of building 
objects, a systematic shifting the building roof’s polygon is 
required and more complicated comparison must be developed. 
Further classification of the damage level by object comparison 
will be a next development. An additional step to exclude other 
changes not due to the catastrophe will also be included. 
 
 

4. TESTING RESULS 

Two tests were carried out for Boumerdes city, Algeria and 
Bam city, Iran. The former is a typical city with sparsely 
distributed buildings and the latter is a very dense city, on the 
contrary. Boumerdes was one of the most heavily-damaged 
areas due to the earthquake on May 21, 2003. Its pre-event 
QuickBird scene was about one year before the event (April 22, 
2002) and its post-event one was two days after the event (May 
23, 2003). In the same year, another strong earthquake occurred 
beneath the city of Bam, Iran, on December 26. The test used 
QuickBird scenes observed the city on September 30, 2003 and 
January 3, 2004, respectively. Figure 4 shows the extracted 
portions of those images for testing. They are typical 
representatives of building alignments in these cities. 
 



 

 
Figure 4. Extracted portions for testing of Bourmedes a) pre-

event, b) post-event images and Bam c) pre-event 
and b) post-event images. 

 
Since the distributions of buildings in two areas are very 
different, the images of two areas present very different 
situations. Few building shadow can be observed in the pre-
event image of Bam. However, the very good point of Bam 
images is a quite clear difference of building’s spectral 
signatures in comparison with others. The building objects were 
successfully extracted from the Bam images as shown in 
Figures 5a and 5b. Colour code is given according the ID and 
SCALE of each extracted building. The locations of damaged 
buildings were also detected as bright areas in Figure 5c. There 
were several commission errors caused by small objects like 
cars and the small difference of sensor looking angles. Those 

errors can be removed by opening morphological filtering as 
shown in Red in Figure 5d. 
 
As building features in images of Boumerdes possess very 
similar spectral signatures as other objects like streets, they 
could not be extracted by using solely spectral information. The 
size property, which was presented through the scale space, was 
also not enough because many other objects had the same size. 
Fortunately, the shadows of building features were presented 
very clearly. This property should be included as an attribute of 
the building objects in the case when this kind of object can be 
successfully extracted. For the case of Boumerdes images, 
extraction of shadow objects for damage detection might be 
more effective than extraction of building objects. The 
extracted results are shown in Figure 6. They are well separated 
because of the sparse distribution of the buildings. 
 
Following our previous study (Vu et al. 2004), damage can be 
indirectly detected through the comparison of shadow’s lengths 
in the longitudinal and transverse directions of the buildings 
between the pre-event and post-event images. Four damage 
building blocks were detected and named A, B, C and D. While 
A is a commission error due to the shadow of cloud, other three 
blocks were correctly detected as they were heavily damaged. 
There is also an omission error, which was the slightly damaged 
building block locating at the top-right of the image. Through 
these two tests, it is recommended to include the shadow of 
buildings, the lengths in the longitude and transverse directions 
as the attributes of building objects. The indirect detection of 
shadow behaviour is a good solution as the spectral signatures 
of building objects show less discrimination in comparison with 
others.  

 
 

 

 
Figure 5. Extracted buildings from Bam images: a) pre-event, b) post-event with dark blue for background and location of damaged 

buildings: c) before filtered, d) after filtered. 
 
 

 
Figure 6. Extracted shadows from Boumerdes images: a) pre-event, b) post-event and c) comparison of shadow lengths 

 
 



 

5. CONCLUSIONS 

An object-based detection method of damaged buildings was 
proposed. Its implementation has been accomplished and 
several tests have been carried out for verification of the 
algorithms. This method was built on the theory of area 
morphology to extract building objects. Subsequently, several 
extracted properties like spectral, size, hierarchical relationship, 
etc. were used comparing the existences of a building before 
and after a catastrophe. As the spectral signature is a main 
factor, if these of the building objects show very similar to 
others, the shadow of buildings can be used as an indirect 
damage detection method. Testing results showed good 
agreement with the results by visual interpretation. More 
complicated comparison of building objects will be concerned 
in further development for classification of damage levels and 
removal of other changes not due to the concerned disaster. In 
order to do that, more context information should be included 
such as building orientation, classification of structure types, 
using building objects, their shadow objects and perhaps, 
additional sources. 
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