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ABSTRACT: The Central Java Earthquake with magnitude 6.3 occurred on May 27, 2006. Due 
to this earthquake, about 5,800 people were killed and about 38,000 people were injured. In this 
study, using QuickBird images, acquired before and after the earthquake, we attempted to 
extract the areas of building damage based on object-based classification. In land cover 
classification using high-resolution satellite images by pixel-based classification, salt-and-paper 
noise occurs. This problem may be solved by object-based classification. First, building areas 
were extracted for the pre-event image and the post-event image by pixel-based classification. 
Secondly, the similar extractions were conducted by object-based classification and the results 
from the two methods were compared. Finally, taking the difference of the building areas for the 
pre- and post-event images by the object-based approach, damaged building areas were 
identified and the result was compared with that by visual inspection.  
 

 

1. INTRODUCTION 
 

It is very important to grasp an extent of damage in an early stage, after the occurrence of 
natural disasters. Because of advance of remote sensing technology, we can recently get 
high-resolution satellite image, e.g. QuickBird and Ikonos, in which we can identify a house or a 
car, as well as moderate resolution satellite images, shortly after a disaster occurs. In the 2004 
Indian Ocean Tsunami, a large number of remotely sensed images acquired before and after the 
tsunami were used very effectively in rescue and restoration activities. In this way, remotely 
sensed images became one of the important sources to grasp damage distribution in broad areas.  
 
Using a post-event Ikonos image and pre-event other satellite images, Saito et al. (2004) 
performed visual damage inspection of Bhuj area after the 26 January 2001 Gujarat, India 
earthquake. They compared the satellite images and the photos taken in a field survey and 
discussed the accuracy of high-resolution satellite images in building damage detection. 
Yamazaki et al. (2004) conducted visual interpretation of individual building damage using 
QuickBird images, taken both before and after the 2003 Boumerdes, Algeria, Earthquake. Based 
on European Macrosesismic Scale (EMS-98), they discussed the variation of damage 
interpretation results depending on interpreters. Yano et al. (2004) also carried out similar visual 
damage inspection for the 2003 Bam, Iran, Earthquake. 
 
Although visual damage inspection provides very useful information, it is time consuming. 



Therefore image processing methods have been employed to quickly perform damage 
interpretation. The most standard approach along this line is pixel-based land cover 
classification based on, e.g., the maximum likelihood method. However, for high-resolution 
images, pixel-based approaches may give too noisy results because of their too-high resolution. 
Mitomi et al. (2002) developed a method to detect debris using edge information from 
post-disaster aerial images. After a pixel-based debris extraction, they performed a texture 
analysis to reduce “salt and pepper noise”.  
 
To solve the salt-and pepper problem in high-resolution images, object-based classification has 
recently been introduced. Kouchi et al. (2005) compared the result from pixel-based 
classification and that from object-based one for debris detection using QuickBird images in the 
2003 Boumerdes, Algeria, Earthquake. In this study, however, only the post-event image was 
used and thus, pre-event information, e.g. location of buildings, was not used effectively.  

 
In this paper, usefulness of object-based classification is further investigated in building damage 
detection from high-resolution satellite images obtained before and after the 2006 Central Java 
Earthquake. Building areas are extracted for both pre-event and post-event images by 
pixel-based and object-based classifications. The results from the two methods are compared 
and by taking the difference of the building areas from the pre- and post-event images, the areas 
of damaged buildings are identified and the results are compared with that by visual inspection. 
 
 
2. THE 2006 CENTRAL JAVA EARTHQUAKE AND QUICKBIRD IMAGES 
  
A strong earthquake of magnitude 6.3 struck Java Island, Indonesia on May 27, 2006 at 5:54 am 
local time. The epicenter was located at 7.962°S, 110.458°E, about 25 km south-southeast of 
Yogyakarta with the depth was 10km (Fig.1). Due to this earthquake, about 5,800 people were 
killed and about 38,000 people were injured. About 140,000 houses were collapsed and about 
190,000 houses were heavily damaged (USGS, UNOSAT). 
 
QuickBird image has very high resolution, 0.6m per pixel (panchromatic-mode) and 2.4m per 
pixel (multi-spectral-mode) and has 4 bands: blue, green, red, near-infrared. After the Java 
Earthquake, QuickBird capture a clear image of affected areas on June 13, 2006. The image 
includes Imogiri, one of the most severely affected areas in this earthquake. For the area, a 
pre-event image on July 11, 2003 also exists. Thus the present authors purchased these images 
and they were used in this study.  
 
First, pan-sharpened images of 0.6m resolution were produced through combining panchromatic 
images and multi-spectral images as shown in Fig. 2. Next, the registration was carried out 
between these pre- and post-event images using RST transformation method and Nearest 
Neighbor resampling. This process is quite important since the subtraction is carried out 
between the outcomes from these two images. 
 
 
3. DETECTION OF BUILDING AREAS  
 
3.1 Pixel-based Classification  
  
First, conventional pixel-based classification was carried out based on the maximum likelihood 



 
(a) July 11, 2003              (b) June 13, 2006 

Figure 2. Pan-sharpened natural color images of Imogiri  
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method, the most common supervised classification method. In the classification, 8-bit data 
value of blue, green, red, and near-infrared bands were used. The following 8 classes: black-roof, 
gray-roof, red-roof, white-roof buildings, road, soil, vegetation, and shadow, were assigned for 
the pre-event image as training data. For the post-event image, 7 classes: black-roof, gray-roof, 
red-roof buildings, debris, road, vegetation, and shadow, were assigned. White-roof building and 
soil classes were not used for the post-event image since they look difficult to select training 
data and also they look close to debris class. The building areas obtained by the pixel-based 
classification are shown in Fig. 3 (a) and Fig. 4 (a). In these figures, the buildings with different 
roof-color are shown in the same color for easier understanding.  
 
3.2 Object-based Classification 
 
In performing object-based classification, e-Cognition software was used. First, image 
segmentation was conducted to make “objects” using the pre-event and post-event images. In 
e-Cognition, the segmentation process is determined by 5 parameters: Layer Weight, Compact 
Weight, Smooth Weight, Shape Factor, and Scale Parameter (Baatz et al., 2004). The most 
important parameter is Scale Parameter, which determines the object size. The Shape Factor is 
to determine the important level of spectral heterogeneity or shape heterogeneity in 
segmentation. When the shape factor moves toward 0, spectral heterogeneity is more concerned. 
On the contrary, if it moves toward 0.9, shape heterogeneity is more concerned. In further details, 
the spectral heterogeneity is decided by Layer Weight, which gives the weight for each band. 
And the shape heterogeneity is decided by Compact Weight and Smooth Weight. The bigger the 
Compact Weight is, the segmented objects are in more compact shape. Alternatively, the bigger 
the Smooth Weight is, the segmented objects are in more smooth shape. Starting from pixels, 
segmentation runs the merge between two objects and is terminated when a condition is reached. 
This condition is defined based on the fusion value f, which measures the changes when 
merging and decided by Layer Weight, Compact Weight, Smooth Weight, Shape Factor. If f 
equals or becomes bigger than the squared Scale Parameter, the condition is reached. Although 
it is difficult to decide the appropriate parameters suitable to all land cover classes, the user can 
decide the suitable parameters to a few focused classes, e.g. building, road. 



Table 1. Parameters used for image segmentation 
Layer Weight Compact Weight Smooth Weight Shape Factor Scale Parameter

Pre-event Image 1 0 1 0.9 8
Post-event Image 1 0.1 0.9 0.8 5

                          
(a) Pixel-based                                    (b) Object-based 

Figure 3. A part of building areas detected for the pre-event image 
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Figure 4. A part of building areas detected for the post-event image (the same area as Fig. 3)

 
 
The appropriate parameters for buildings shown in Table 1 were used and image segmentation 
was conducted for the pre-event and post-event images. Then, the samples for all the classes 
were selected as the same areas in the pixel-based classification. The objects’ mean values of 
blue, green, red, and near-infrared were used as the indices of classification and the nearest 
neighbor classification method was selected. The results from the object-based classification for  
the pre-event and post-event images are shown in Fig. 3 (b) and Fig. 4 (b), respectively. 
Comparing the results from the pixel-based and object-based classifications with that by visual 
inspection, salt-and-paper noises are seen in the pixel-based classification. Hence, it may be 
concluded that in this resolution and the sizes of the target objects, the better result can be 
acquired by object-based classification. But in object-based classification, some road and 
shadow areas were misclassified to the building classes because their spectral values of the 
sample area are similar to those of the building classes. Hence even object-based classification, 
some classes like these are needed to remove in advance using object feature indices, e.g. length, 
or spatial relationships.  
 



4. DETECTION OF DAMAGED BUILDING AREAS 
 
In this study, the areas with damaged buildings were identified using the pre-event and 
post-event building areas, extracted by object-based classification. The subtraction of the 
post-event building area from the pre-event building area, the rest is considered to be changed 
(collapsed) building areas. Some other possibilities can also be considered; vegetation or 
shadow covered over the buildings in the post-event image, and the buildings have removed 
after acquiring the pre-event image. The first case was considered by removing the vegetation or 
shadow covered post-event areas (Fig. 5) from the pre-event building areas. The second case 
was not adjusted assuming that building removals in this 3-year period were mostly due to 
damages from the earthquake.  
 
The identified building damage areas are shown in Fig. 6 for a small area, and in Fig. 7 for the 
whole study area. Comparing the result by the image processing described above and that by 
visual inspection, a reasonable level of accuracy is seen in Fig. 6. However, some omission 
errors and commission errors are also observed. Accuracy of the proposed method was 
evaluated using the concept of producer accuracy and user accuracy, defined in Fig. 8. Producer 
accuracy was obtained as 67.4%, and user accuracy as 51.5% for the whole study area shown in 
Fig. 7.  
 

 
Figure 6. A part of detected damaged building 

areas (the same area as Fig. 3) 
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Figure 5. A part of detected vegetation and 

shadow areas (the same area as Fig. 3) 
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5. CONCLUSION 
 
Automated detection of the areas with building damage was conducted using QuickBird images 
captured before and after the 27th May 2006 Central Java Earthquake. First, building areas were 
detected by pixel-based classification and object-based classification methods for both pre-event 
and post-event images. Because salt-and pepper noises were seen in the pixel-based 
classification result, the object-based classification is considered to be more suitable to identify 
the areas covered by buildings in high-resolution satellite images. But the result by the 
object-based classification includes some misclassifications, and thus some additional process 
may be necessary. Finally, taking the difference of the building areas for the pre- and post-event 
images by the object-based approach, damaged building areas were identified and the result was 
compared with that by visual inspection. A reasonable level of accuracy was observed by this 
comparison. To establish a general damage detection method in future, however, more 
parametric studies must be necessary for various urban and rural environments. 
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