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Abstract: Remote sensing technology is effective to grasp the damage distributions from various natural disasters, such 
as earthquakes, tsunamis and volcanic eruptions. After the 2007 Off-Mid-Niigata, Japan earthquake, aerial images were 
taken in the stricken area by several air survey companies in Japan. Airborne remote sensing is more suitable to collect 
detailed damage distribution because it provides higher resolution images than satellite remote sensing does. The 
post-event image taken by a digital aerial camera (DMC) is employed in this study to detect building damages. Since 
visual damage inspection takes time to perform for the whole areas that are subjected to severe ground motion, an 
object-based technique is proposed to extract debris from buildings. The proposed method is expected to contribute for 
the damage assessment at an early stage after the occurrence of an earthquake. 

 
 
1.  INTRODUCTION 
 

Aerial photography has been used widely for aerial 
surveying and photogrammetry. Because of its very high 
spatial resolution, aerial photographs were employed to 
detect damages due to earthquakes (e.g., Ogawa and 
Yamazaki, 2000). Digital aerial cameras, recently developed 
and introduced for aerial photography, have much higher 
radiometric resolution than traditional film (analog) aerial 
cameras do. Thus, even though the spatial resolution is 
almost the same level, e.g. 0.1 m, a digital aerial camera can 
capture much clearer images of the earth surface than an 
analog camera does.  

Another important feature of digital aerial cameras is 
that they have a near infrared (NIR) band as well as RGB 
visible bands. Using the NIR band, detection of vegetation 
becomes quite easy. Through the pan-sharpening procedure, 
very-high resolution pseudo-color images can be obtained 
by combining these 4 multi-spectral bands and the 
panchromatic band. Note that the spatial resolution of 
high-resolution satellites currently available is 0.6 m 
(QuickBird) at the maximum, and thus the digital aerial 
images can be used for extraction of detailed damages of 
buildings and infrastructures (Mitomi et al., 2002; 
Maruyama et al., 2006). 

This paper highlights the capability of digital aerial 
images in detecting various damages due to earthquakes. In 
the recent earthquakes in Japan, such as the 2004 
Mid-Niigata, the 2007 Noto Peninsula, and the 2007 
Off-Mid-Niigata earthquakes, the affected areas were 
captured by digital aerial cameras as well as by film aerial 
cameras and high-resolution satellites. Especially for the 
2007 Off-Mid-Niigata earthquake, digital aerial cameras 

captured the affected area both before and after the event. 
Pixel-based and object-based image processing techniques 
are applied to those digital images, and their accuracy to 
extract building damage is discussed. 
 
 
2. DIGITAL AERIAL IMAGES OF KASHIWAZAKI 

CITY 
 

The central part of Niigata Prefecture, Japan was hit by 
a strong MJMA=6.8 earthquake on July 16, 2007. A total 
1,330 houses were collapsed or severely damaged and 15 
people were killed in Niigata Prefecture. Kashiwazaki City 
was most severely affected in the prefecture with 1,120 
collapsed or severely damaged houses and 14 deaths. A fire 
broke out in Kashiwazaki-Kariwa nuclear power plant from 
a transformer. Due to the strong shaking exceeding the 
safety shutdown level, the operation of the power plant has 
been suspended since then. 

Figure 1 shows the study area of this study 
(Higashi-honmachi), a central part of Kashiwazaki City. 
Aerial surveys of the city were conducted by three different 
organizations; Kashiwazaki City Government on 27 April, 
2007 (before the earthquake), Asia Air Survey Co., Ltd. and 
Geographical Survey Institute (GSI), Japan on 19 July, 2007 
(two days after the earthquake). The pre-event images of the 
city government were taken by UltraCam-D digital camera 
(Leberl and Gruber, 2005) while the post-event images of 
Asia Air Survey were obtained by DMC digital camera 
(Hinz, 1999). UltraCam and DMC are the most selling 
large-format aerial digital cameras in the world. The 
post-event images by GSI were taken by RC30 analog (film) 
camera. 



One of the most advantageous features of aerial digital 
cameras is that they have a near infrared (NIR) band as well 
as RGB visible bands. Vegetation is often the cause of 
changes between two images taken in different seasons. 
However, using NIR and red (R) bands of digital cameras, 
vegetation is easily extracted in terms of the normalized 
vegetation index (NDVI), calculated by  

NDVI = (NIR - R) / (NIR + R)                (1) 
where R and NIR are the reflectance of the red and 
near-infrared bands, respectively. NDVI is a simple and 
reliable index to identify the existence of vegetation, and 
therefore widely applied to assess the characteristics of the 
earth surface in the field of satellite remote sensing.  

Another important feature of digital aerial images is its 
high radiometric resolution. Since digital images contain 
much less noise than scanned-analog photos do, much clear 
edges can be extracted. Edge extraction is one of the 
important tools to extract building damage (Mitomi et al., 
2002), to estimate the overturning ratio of tombstones due to 
earthquakes (Nitto and Yamazaki, 2006), and to extract 
vehicles from aerial images (Liu et al., 2007).  
 
 
3. PIXEL-BASED SUPERVISED CLASSIFICATION 

 
First, a conventional pixel-based classification was 

carried out for the post-earthquake digital image (Figure 1) 
based on the maximum likelihood method, the most 
common supervised classification method. In the 
classification, 8 bit values of RGB and NIR bands were used 
and twelve classes were selected as training data: black roof, 
white roof, gray roof, red roof, blue roof, road, ground, 
paved ground, shadow, tree, grass, and debris. 

The result of the classification is shown in Figure 2. 
Vegetation (tree and grass) were correctly classified because 
the NIR band was used. However, salt-and-pepper noises are 
seen (Matsumoto et al., 2006) in all the parts of the image. 
Such noises were generated because the digital aerial image 
has very-high spatial-resolution which captures fine details, 
especially in pixel-based classification. Thus, many small 

misclassifications are seen, especially for black-roofs by 
capturing individual roof-tiles. Another cause of 
misclassifications is the effect of sunlight. Since sunlight 
comes from the right side of the image, the brightness of 
right- and left-side roofs is different. 

Figure 3 shows the result of visual extraction of debris 
for the post-event image. Comparing the debris areas in 
Figure 2 (yellow) and Figure 3 (red), those by the 
pixel-based classification look to overestimate the actual 
debris areas. Debris does not have unique spectral 
characteristics because it consists of the mixture of woods, 
mud and roof-tiles. Therefore, a lot of misclassifications as 
debris were seen in the ground and non-damaged roofs with 
the color of no training data. Mitomi et al. (2002) introduced 
a sort of spatial filtering to reduce the salt-and-pepper noise 
classified as debris. In such approaches, the size of spatial 
window should be assigned properly, depending on the size 
of target objects. 
 
 
4. OBJECT-BASED SEGMENTATION AND 
SUPERVISED CLASSIFICATION 
 
4.1 Object-based Approach and Segmentation 

 
Figure 1. Digital aerial image with 12.2 cm resolution for 
a part of Kashiwazaki City, which was taken two days 
after the 2007 Mid-Off-Niigata earthquake by Asia Air 
Survey Co., Ltd.  
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Figure 2. The result of pixel-based supervised 
classification for the post-event image. 

Figure 3.  The result of visual extraction of debris.  



To solve the salt-and-pepper problem in 
high-resolution images, object-based classification has 
recently been introduced. Yamazaki and Kouchi (2006) 
compared the result from pixel-based classification and that 
from object-based one for debris detection using QuickBird 
images in the 2003 Boumerdes, Algeria earthquake. In the 
study, however, only the post-event image was used and thus, 
pre-event information, e.g. the location of buildings, was not 
used effectively. Usefulness of object-based classification is 
further investigated by Matsumoto et al. (2006) in building 
damage detection from QuickBird images obtained before 
and after the 2006 Central Java earthquake. Building areas 
were extracted for both the pre-event and post-event images 
by pixel-based and object-based classifications, and their 
areas were compared. The results showed that the 
object-based method is suitable to reduce the noise to extract 
debris from other objects. 

In the present study, the digital aerial images with 
much finer spatial-resolution were employed in performing 
object-based classification using e-Cognition software 
(Baatz et al., 2004). Image segmentation was carried out as 
the first step to make “objects” using the post-event 4 band 
image. In e-Cognition, the segmentation process is 
determined by 5 parameters: Layer Weight, Compact Weight, 
Smooth Weight, Shape Factor, and Scale Parameter. The 
most important parameter is Scale Parameter, which 
determines the object size. Shape Factor is to determine the 
importance level of spectral heterogeneity or shape 
heterogeneity in segmentation. When Shape Factor moves 
toward 0, the spectral heterogeneity is more concerned. On 
the contrary, if it moves toward 0.9, the shape heterogeneity 
is more concerned. The spectral heterogeneity is decided by 
Layer Weight, which gives the weight for each spectral band. 
The shape heterogeneity is decided by Compact Weight and 
Smooth Weight; the summation of these values should be 1.0. 
When Compact Weight is larger than Smooth Weight, the 
segmented image objects become a more round shape. On 
the contrary, when Smooth Weight is larger than Compact 
Weight, they become to have smoother borderlines. 

Starting from pixels, segmentation runs the merger 
between two objects and is terminated when an assigned 
condition is reached. This condition is defined based on the 
fusion value f, which measures the changes when merging. 
If f equals to or becomes bigger than the squared scale 
parameter, the condition is reached. Although it is difficult to 
decide the appropriate values of the parameters suitable to all 
land cover classes, the user can decide the suitable values to 
a few focused classes, e.g. building, road, and car. 

The appropriate parameters for the size of a car was 
used in this study because the aerial images have very high 
spatial-resolution and we want to extract debris larger than 
say, 3-5 m. Considering its resolution (12.2 cm) and the 
target size of objects (car), Scale Parameter was determined 
as 40 for the post-event image. Figure 4 shows the result of 
segmentation for the study area and the parameters used. 
From the figure, objects like cars, roofs, and debris are seen 
to be segmented properly as one or a few adjacent objects. 

 

4.2 Object-based Supervised Classification 
After segmentation, the training areas for all the 

classes used in the pixel-based classification were assigned 
as those for the object-based supervised classification. The 
objects’ mean values and standard deviations of 4 spectral 
bands were used as the indices of classification. In 
e-Cognition, not only these layer values of image objects but 
also various feature values of image objects, such as shape, 
can be considered.  

The characteristic object features for debris are with a 
complex shape and a smaller area than others. In order to 
extract debris accurately, the object features, that are Border 
Length and Shape Index, were employed in the classification. 

Segmentation parameters
Scale Parameter = 40, Layer Weight = 1.0
Shape Factor = 0.5, Compact Weight = 0,
Smooth Weight = 1.0

Figure 4. The result of image segmentation for the 
post-event 4 band image.  

Figure 5. The result of object-based supervised 
classification for the post-event 4 band image. 



The border length is the length of borderline of an image 
object and the shape index means the degree of complexity 
of an image object; if an image object has a complex shape, 
the shape index is given as a high value. The nearest 
neighbor method was used in a classification step. 

The result of the object-based classification for the 
post-event images is shown in Figure 5. Comparing with the 
pixel-based classification result (Figure 2), the object-based 
method looks to classify the images into proper object 
groups. Salt-and-paper noise is no more seen in case of the 
object-based classification. Comparing the object-based 
classification result with the visual inspection result (Figure 
3), however, it looks not so satisfactory. The classification 
result includes a lot of commission errors; some objects like 
cars, intact roofs, bare grounds, are classified as debris. 
Since debris contains various materials and possesses 
various shapes, some objects without proper training areas 
may be misclassified as debris. 

Another drawback of classification methods, both 
pixel-based and object-based, is necessity to assign many 
classes and their training data. Actually, if the extraction of 
debris is the main objective, the classification results for 
other classes are not so important. If we must extract 
earthquake damages from many aerial images, the selection 
of proper classes and training data is time consuming. Thus 
we will focus only on debris and introduce a level-slice 
method after the object-based segmentation process. 
 

 
5. OBJECT-BASED LEVEL-SLICE METHOD FOR 
DEBRIS EXTRACTION 
 

In order to perform quick damage extraction from 
digital aerial images, a multi-level slice method is introduced 
after the object-based segmentation process. Since we focus 
on the extraction of debris from collapsed houses, color 
information is not so important. The color of debris is 
dependent on its material, e.g. roof-tiles, woods, soil, and 
there is no unique color. Thus a panchromatic image or an 
intensity (brightness) image is employed instead of RGB 
color layers. In this study, the intensity (I) is obtained by 
         I = 0.3R + 0.59G + 0.11B          (2) 

To exclude vegetation, the normalized vegetation index 
(NDVI) is considered to be another layer value to be used 
for segmentation and level-slice. For these two layers, 
segmentation was performed using the same parameter 
values as Figure 4. 

After segmentation, the characteristics of debris objects 
were investigated in terms of their object features. In this 
study, the two layer values, I and NDVI, and five features 
related to the object shape, Area, Length, Width, Border 
Length, Average Length of Edges. To determine the 
conditions of these object feature values, debris from 
collapsed houses and roofs of non-damaged houses were 
used as training areas as shown in Figure 6.  

Figure 7 shows the mean and standard deviation of the 
intensity value for the objects shown in Figure 6. It is 
observed that the standard deviation for the debris objects is 

generally bigger than that for the intact roofs. The objects 
with the mean NDVI value larger than 0.17 were excluded 
as vegetation in this case. Figure 8 plots the relationship 
between Area/Border Length and Average Length of Edges 
for the training areas. The both values represent irregularity 
of objects and their conditions to select debris objects are 
shown in the figure. Figure 9 shows the relationship between 
Width and Length for the training areas. To exclude large 
intact roofs, upper limits were assigned for Width and Length. 
Long thin objects, like road lines and shadows, were 
removed by assigning the threshold of Length/Width. 

 
Figure 6. Training areas to determine the condition of 
object features for debris. 
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Figure 7. The mean and standard deviation of the 
intensity of the objects shown in Figure 6. The bounds 
were used to extract debris objects.  



The objects satisfying all these conditions were 
assumed to be considered as debris as shown in Figure 10. 
Comparing this figure with the visual inspection result, the 
extracted objects are much more than actual debris. 
Especially, there are still many small objects which were 
misclassified as debris. To reduce these commission errors, 
the pre-event digital image taken by UltraCam-D was 
employed. The similar debris extraction procedure was 
applied to this image and the result was shown in Figure 11. 
Since the debris’ threshold values determined for the 
post-event image were used, many “debris” areas were 
extracted, as obvious commission errors. The common 
“debris pixels” in Figures 10 and 11 were removed from 
Figure 10 to reduce commission errors.  

Since there still remain many commission errors, the 
objects smaller than a minimum area (Amin) were further 
excluded from debris. Figure 12 shows the accuracy of 
debris extraction with respect to Amin. The overall accuracy is 
considered as the average of producer accuracy and user 
accuracy. To increase Amin value, the user accuracy increases 
because commission errors (area A in Figure 12) are 
removed, and the producer accuracy decreases due to 
reduction of the correctly extracted area (B in Figure 12). 
The average of the two accuracies gets its maximum value 
when Amin reaches about 58 m2. But this maximum value 
does not show a clear peak, a slight change in the extraction 
procedure may give other Amin value.  

Figure 13 shows the filtered debris areas at this Amin 
value and the debris areas are in good agreement with the 
visual inspection result. But this area-filter value is 
considered to be too large since it is almost the same level as 
the footprint of an ordinary house in Japan, and hence this 
kind of area-based accuracy evaluation may have some 
limitation. 

Evaluation of accuracy is further carried out in an 
object-based manner; if an extracted object has a 50% 
overlap with an actual debris area, it is counted as correct. 
Figure 13 shows the accuracy of debris extraction by this 
object-based counting with respect to Amin. The maximum 
accuracy is obtained when Amin reaches about 58 m2, the 

0 

5 

10 

15 

20 

25 

30 

0 2 4 6 8 10 

L
e
n
gt
h
 (
m
)

Width (m)

Debris

Non-Damaged

9.0m

24.0m

Length/Width=6.5

 
Figure 9. The relationship between Width and Length 
for the training areas. The bounds were used to extract 
debris objects.  

Figure 10.  The result of extracted debris by the 
object-based level-slice method. Many small commission 
errors are seen.

Figure 11.  The result obtained by applying the debris 
extraction procedure to the pre-event digital image. 
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Figure 8. The relationship between Area/Border Length 
and Average Length of Edges for the training areas. The 
bounds were used to extract debris objects.  
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Figure 12.  Area-based accuracy of extracted debris by 
the object-based level-slice method.  



same as the area-based accuracy evaluation. However, the 
peak was much clearer than the previous evaluation. If we 
try to estimate the number of collapsed houses from aerial 
images, counting the number of extracted objects by this 
scheme may give acceptable accuracy. However, the 
determination of object feature values still need to be tested 
for many other examples.  

 
 
6. CONCLUSIONS 

 
Automated building damage extraction was conducted 

using a digital aerial image captured after the 16 July 2007 
Mid-Off-Niigata earthquake. First, a pixel-based maximum 
likelihood classification was performed. As the result, 
salt-and-pepper noises and misclassifications were seen. An 
object-based supervised classification was then performed 
assigning 12 classes as training data. Although the 
object-based classification method gives an acceptable level 
of accuracy, assigning proper classes and training data is 
time consuming for a large area. Thus a level-slice method 
was introduced after object-based segmentation. Selecting 
the intensity and NDVI as layer values and employing 
several feature values of debris objects, the object-based 
level-slice method was carried out. The similar debris 
extraction was also carried out for the pre-event image to 
remove commission errors in the level-slice debris extraction. 
Since many small misclassifications were still observed, a 

minimum area-filter was further applied to remove them. 
The extracted debris areas show a reasonable level of 
accuracy, especially in the object-based producer and user 
accuracy. To enhance the accuracy further, the method 
should be tested for larger areas and more examples.  
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Figure 13.  Object-based accuracy of extracted debris 
by the object-based level-slice method.  


