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ABSTRACT   

Extraction of collapsed buildings from a pair of Lidar data taken before and after the 2016 Kumamoto, Japan, earthquake 
was conducted. Lidar surveys were carried out for the affected areas along the causative faults by Asia Air Survey Co., 
Ltd. The density of the collected Lidar data was 1.5 - 2 points/m2 for the first flight on April 15, 2016 and 3 - 4 points/m2 
for the second flight on April 23, 2016. The spatial correlation coefficient of the two Lidar data was calculated using a 
101 x 101 pixels window (50 m x 50 m), and the horizontal shift of the April-23 digital surface model (DSM) with the 
maximum correlation coefficient was considered as the crustal movement by the April-16 main-shock. The horizontal 
component of the calculated coseismic displacement was applied to the post-event DSM to cancel it, and then the 
vertical displacement between the two DSMs was calculated. The both horizontal and vertical coseismic displacements 
were removed to extract collapsed buildings. Then building-footprints were employed to assess the changes of the DSMs 
within them. The average of difference between the pre- and post-event DSMs within a building footprint was selected 
as a parameter to evaluate whether a building is collapsed or not. The extracted height difference was compared with the 
spatial coherence value calculated from pre- and post-event ALOS-2 PALSAR-2 data and the result of field damage 
surveys. Based on this comparison, the collapsed buildings could be extracted well by setting a proper threshold value 
for the average height difference. 
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1. INTRODUCTION 
Information gathering after a large-scale natural disaster is very important in emergency response and recovery activities. 
But the access to the affected areas is often hindered by the disruption of road networks and telecommunication systems. 
Thus remote sensing technologies have been employed to assess the extent and degree of various damages [1-5]. Various 
high-resolution optical and SAR satellites have been in operation in the last decade and they were employed to observe 
affected areas after major natural disasters, such as the 2011 Tohoku, Japan, earthquake and tsunami [6], the 2011 central 
Thailand flood [7], and the 2015 Gorkha, Nepal, earthquake [8]. The acquired satellite data provided the information on 
inaccessible affected areas. 

Various aerial surveying technologies have also been developed in the last few decades, such as digital aerial cameras, 
Lidar (Light detection and ranging), and more recently, unmanned aerial vehicles (UAVs, drones). The images acquired 
by digital aerial cameras have much higher radiometric resolution than those from analogue cameras, and thus they have 
been extensively used in recent natural disasters [9]. Lidar is the most costly but the most accurate method to acquire 
digital surface models (DSMs), and hence it has been used to develop detailed digital elevation models (DEMs) and 3D 
configuration of buildings [10]. But applications of Lidar for damage detection are still few compared with other remote 
sensing technologies. The main reason is considered as the lack of Lidar data obtained before a disaster. 

A series of earthquakes with Mw7.0 as the main-shock hit Kumamoto prefecture in Kyushu Island, Japan in April 2016 
[11]. Among the several remote sensing technologies used to monitor the area affected by the Kumamoto earthquake 
[12], a pair of Lidar datasets taken before and after the main-shock were available [13, 14]. This kind of dataset is not 
often available. Therefore, this study explores the potential use of Lidar data to extract collapsed buildings over a wide 
area. The average of difference between the pre- and post-event DSMs within a building footprint was introduced to 
evaluate whether a building is collapsed or not. The result was compared with the spatial coherence value calculated 
from pre- and post-event ALOS-2 PALSAR-2 data and field survey data. 

 

���������	
�	��
���	������
��	������������	
��	�����	��	����	��	�
��������������

�����������
��������������
�����
� ����
��!�	��"��	���#���$��%��#���&��$�'()*'�
'()*'(+�,�-�.('/��#���,���������0�(.//1/2345'/56'2�,����0�'($'''/5'.$../2(3'

#���$��%��#���&��$�'()*'��'()*'(+1'

7�8	�������9���0�����
055888$
�����������������$���5��	%���	��1��������	�
1�%1
�����	�'(5'35.('/�
���
��%��
�0�����
055
�����������������$
���$���5

5
���
:%�
�$�
�;



 
 

 
 

2

2. THE 2016 KUMAMOTO EARTHQUAKE SEQUENCE 
A Mw6.2 earthquake hit the Kumamoto Prefecture in Kyushu Island, Japan on April 14, 2016 at 21:26 (JST). A 
considerable amount of structural damages and human casualties had been reported due to this event, including 9 deaths 
[11]. The epicenter was located in the Hinagu fault with a shallow depth. On April 16, 2016 at 01:25 (JST), about 28 
hours after the first event, another earthquake of Mw7.0 occurred in the Futagawa fault, closely located with the Hinagu 
fault. Thus, the first event was called as the "foreshock" and the second one as the "main-shock". The epicenters of the 
both events were located in Mashiki Town (about 33-thousand population), to the east of Kumamoto City (about 735-
thousand population). The total number of aftershocks (larger than magnitude 3.5) reached 340 times as of April 30, 
2017, one year after the foreshock. This number is the largest among recent inland (crustal) earthquakes in Japan [15]. 

Figure 1 shows the location of these causative faults and Japanese national GNSS Earth Observation Network System 
(GEONET) stations in the source area [16]. Note that the GEONET system has about 1,300 stations covering Japan’s 
territory uniformly. The displacement of 75 cm to the east-northeast (ENE) was observed at the Kumamoto station while 
that of 97 cm to the southwest (SE) was recorded at the Choyo station during the main-shock. These observations 
validated the right-lateral strike-slip mechanism of the Futagawa fault. 

The peak ground acceleration (PGA) and the peak ground velocity (PGV) recorded at the KiK-net seismic network's 
Mashiki station were 925 cm/s2 and 92 cm/s in the foreshock while those were 1,313 cm/s2 and 132 cm/s in the main-
shock. These values were quite large among recent earthquake records in Japan. Extensive impacts due to strong shaking 
and landslides were associated by the Kumamoto earthquake sequence, such as collapse of buildings and bridges, and 
suspension of road and railway networks [11,12]. A total of fifty (50) direct deaths were accounted by the earthquake 
sequence, mostly due to the collapse of wooden houses in Mashiki town and landslides in Minami-Aso village.  

 
3. STUDY AREA AND DATASET 

After the foreshock, a Lidar surveying flight was carried out during 15:00 – 17:00 (JST) on April 15, 2016, in order to 
record the effects of the earthquake [13]. It produced point clouds with an average point density of 1.5-2 points/m2. 
Subsequently, because the unexpected main-shock occurred, a second mission was set up during 10:00 – 12:00 (JST) on 
April 23, 2016, which produced point clouds with an average point density of 3-4 points/m2. Both sets of Lidar data were 
acquired using a Leica ALS50II instrument and the same pilot and airplane. After rasterization of the raw point clouds, 
two digital surface models (DSMs) with a data spacing of 50 cm were created. Figure 2 shows the extent of the post-
event DSM, which represents the entire study area. It covers the main part of Mashiki Town and some parts of Nishihara 
Village, Mifune and Kashima Towns, and Kumamoto City.  

The study area is located in the near field of the Kumamoto earthquake sequence where significant permanent ground 
displacements were produced during the earthquake. A direct comparison of the pre- and post-event DSMs shows that 
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Figure 1. Location of causative faults and GNSS stations in the 2016 Kumamoto earthquake. 

#���$��%��#���&��$�'()*'��'()*'(+1.

7�8	�������9���0�����
055888$
�����������������$���5��	%���	��1��������	�
1�%1
�����	�'(5'35.('/�
���
��%��
�0�����
055
�����������������$
���$���5

5
���
:%�
�$�
�;



 
 

 
 

3

the building coordinates do not match because the post-DSM contains coseismic displacements. Therefore, the post-
DSM was shifted before detecting the damaged buildings based on the permanent crustal movement [14]. Figure 3 
illustrates the calculated coseismic displacement for the common Lidar data area. The results of new field measurement 
carried out in August 2016 for surveying reference points after the Kumamoto Earthquake are also shown [17]. The 
coseismic displacements estimated from the Lidar data show good agreement with the survey results.  

  

 
Figure 2. Location of the post-event Lidar data in Kumamoto Prefecture, Japan. Shaded colors represents the ground 
elevation. The green rectangle shows the locations of the central part of Mashiki Town, investigated in this study. The blue 
polygon in the inset depicts the study area. 

 
Figure 3. Estimated 3D coseismic displacement after the main-shock of the 2016 Kumamoto earthquake. The black arrows 
and shaded colors indicate the horizontal and vertical displacements obtained from the Lidar data, respectively [14]. The 
blue arrows indicate the horizontal displacements at the control points measured by the Geospatial Information Authority 
of Japan [17]. 
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4. EXTRACTION OF COLLAPSED BUILDINGS 
To focus on buildings, a geocoded building footprint dataset, provided by the Geospatial Information Authority of Japan 
(GSI), was used. Only buildings with footprint areas greater than 20 m2 were evaluated. Because the point densities of 
the two DSMs are different and the footprint data include some errors, perfect matching of the DSMs with the building 
footprints could not be achieved. For this reason, the building footprints were reduced by 1 m. The LiDAR data within 
the reduced building boundaries were then extracted and processed. The reason for using the reduced building 
boundaries was to discard the DSM data near the building’s boundaries in the subsequent analysis. 

Figure 4 illustrates three buildings located in the study area. For each case, the pre-DSM (blue dots), the post-DSM (red 
dots), and the difference of the two DSMs are depicted. These buildings were selected in order to demonstrate different 
damage patterns: non-damaged, tilted, and collapsed buildings. It is worth noting that the difference between the DSMs 
for a non-collapsed building (a) shows high values around the boundary of the building footprint, which was caused by 
the effect mentioned earlier. These errors are certainly present for tilted buildings as well (b). Figure 4c shows a typical 
mid-story collapsed steel-frame building, in which the two DSMs and their difference highlight the damage pattern.  

 
Figure 5 shows the relative vertical displacement calculated from the two Lidar DSMs, where blue colored pixels show 
the decrease of height, mostly due to the collapse of buildings. Figure 6 shows the relationship between the height 
difference and the extracted area exceeding the plus and minus thresholds. For example, if 0.5-m is selected as the height 
difference threshold, about 8.5 % of the target area is extracted. Note that although the Lidar DSMs have elevation 
accuracy of less than 10 cm, the location accuracy of laser cloud points is an order of 50 – 70 cm. Considering this 
situation, +0.5 m was determined as the height difference threshold of changes for 0.5-m square grid Lidar data. It is 
recognized from the figure that the area of reduced-height pixels is about 1.6 times of the area of increased-height pixels. 
This observation can be explained by the fact that the reduced-height in this urban area is mostly due to the collapse of 
buildings and the increased-height is due to the accumulation of debris and the displacement of collapsed buildings to 
surrounding areas. 

 
Figure 4. Examples of non-collapsed (a) and collapsed (b, c) buildings extracted using the Lidar DSM data. The left figure shows 
the photos taken after the main-shock by the authors, the middle figure the two Lidar DSMs, and the right figure the elevation 
differences between the two DSMs. 
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(a)                                                                                                  (b) 
Figure 5. DSM obtained from Lidar flight on April 23, 2016 (a) and the difference of the two DSMs‘ heights in the area shown by 
yellow square after removing crustal movements (b). 

 
Figure 6. Relationship between the height difference and the area exceeding the plus and minus thresholds 

 
Figure 7. Changed areas extracted by height-difference (abs. (dH) > 0.5 m) of the two DSMs (a); and changed areas extracted by low 

coherence (� < 0.2) from PALSAR-2 data (b). Objects smaller than 9.0 m2 were excluded as noises from these plots. 
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Figure 7 compares the possible changed areas extracted by height-difference (dH > 0.5 m or dH < -0.5 m) and those by 
low coherence (� < 0.2) from pre- and post-event ALOS-2 PALSAR-2 data [18]. In these extractions, the objects smaller 
than 9.0 m2 were removed as noises, such as cars and debris. The distributions of the extracted areas were not the same 
but very similar although the situations of change for the two data sets have some different aspects.  

The extracted areas from the Lidar DSMs were closely examined for the central part of Mashiki Town including the 
town office building as shown in Figure 8. It is seen from the figure that by increasing the height-threshold, the selected 
areas are seen to decrease. Increased-height pixels are seen to be mostly parking cars and some debris while decreased-
height pixels are collapsed buildings.  

From all the comparisons, the most suitable threshold value of the average height reduction within a reduced building 
footprint was determined as 0.5 m [19]. Figure 9 illustrates the spatial distribution of collapsed buildings estimated using 
this threshold for the entire study area, in which a large number of collapsed buildings were observed. The red and black 
polygons represent the collapsed (D5) and non-collapsed (D0-D4) buildings, respectively. The color of the pixels 
represents the difference in elevations between the two DSMs. Blue pixels depict the differences of elevations less than -
0.5 m, and yellow pixels represent differences greater than 0 m. Within the study area, a total of 26,128 buildings were 
evaluated, and 1,760 buildings were classified as collapsed (dH less than -0.5 m).  

Finally, Figure 9b provides a closer look of the areas where the collapsed buildings are concentrated, together with the 
location of the collapsed buildings surveyed by Yamada et al. [20] as black triangles. Note that the area of field survey 
was much smaller than our study area; it covers only the area with black triangles exist. A good agreement can be 
observed between the survey data and the DSM-based collapsed building extraction. Thus multi-temporal Lidar data is 
considered to be very effective to extract heavily impacted urban areas due to natural disasters. 

 

 

(c)  dH > 0.3 m dH < -0.3 m (d)  dH > 0.5 m dH < -0.5 m (e)  dH > 0.7 m dH < -0.7 m

(a) Aerial photo on April 16, 2016 (b) Height difference of DSMs

 
Figure 8. Aerial photograph around Mashiki Town office (a), height difference of the two DSMs (b), and extracted areas by 
different height-difference values (c-e). Objects smaller than 9.0 m2 were excluded. 
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5. CONCLUSIONS 

Extraction of collapsed buildings from a pair of Lidar data taken before and after the 2016 Kumamoto, Japan, earthquake 
was attempted. The spatial correlation coefficient of the two Lidar data was calculated and the horizontal shift of the 
April-23 digital surface model (DSM) with the maximum correlation coefficient was considered as the crustal movement 
by the April-16 main-shock. The horizontal component of the calculated coseismic displacement was applied to the post-
event DSM to cancel it, and then the vertical displacement between the two DSMs was calculated. The both horizontal 
and vertical coseismic displacements were removed to extract collapsed buildings. Then building-footprints were 
employed to assess the changes of the DSMs within them. The average of differences between the pre- and post-event 
DSMs within a building footprint was selected as a parameter to evaluate whether a building is collapsed or not. The 
extracted height difference values were compared with the spatial coherence values calculated from pre- and post-event 
ALOS-2 PALSAR-2 data. The comparison result indicates that the collapsed building can be extracted by setting a 
proper threshold value, plus and minus 0.5 m within a building footprint, and the selected total areas were closed to low 
coherence (� < 0.2) areas from the pre- and post-event PALSAR-2 data. This conclusion was further validated by the 
result of field damage investigation. 

 
 
Figure 9. Map showing the distribution of collapsed buildings, shown as red polygons, in the entire study area  [19]. The pixel 
color represents the difference in elevations between the two DSMs (a). The green squares show the location of area shown in 
(b). Close-up of Area b where the collapsed buildings were concentrated (b). The black triangles show the collapsed buildings 
from Yamada et al. [20]. 
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