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ABSTRACT: The estimation of building damage due to earthquakes is crucial for disaster management and disaster 
relief activities. So far, mainly two methodologies have being applied: (1) a combination of the spatial distribution of 
strong ground motion intensity and building damage functions; and (2) the application of change detection 
methodologies using satellite images such as synthetic aperture radar (SAR) data. It has been reported elsewhere that 
there is a correlation between changes in the backscattering coefficient and the presence of building damage. 
Furthermore, from a seismic hazard and risk analysis perspective, there is also a relationship between the ground 
motion intensity (Peak Ground Acceleration - PGA or Peak Ground Velocity - PGV) and the level of building damage, 
which is the foundation of fragility functions theory. However, a combination of these two methodologies to estimate 
building damage has not been researched much. Thus, this study aims to estimate the distribution of building damage 
by joining these two sources of information: change detection of pre- and post-event SAR images and spatial 
distribution of strong motion intensity. Building damage surveyed at Mashiki town due to the 2016 Mw7.0 Kumamoto 
earthquake is used as ground truth data to verify our hybrid method. 
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1.� INTRODUCTION 

Earthquake-induced building damage estimation is 
critical for a quick response such as sending first aid and 
relief. Thus, the most precise estimation the better 
decisions can be made during emergency disaster. 

Remote sensing technology, such as optical and 
synthetic aperture radar (SAR) satellite images, has been 
used lately during several natural disasters to measure the 
extension of damage (Liu et al. 2013). Basic approaches 
rely on identifying changes between two images taken 
before and after a disaster event. It relies on the 
assumption that the changes are correlated with the 
effects of the earthquake.  

The averaged pixel difference, correlation coefficient, 
and coherence between the pair of images are parameters 
often used to detect changes (Liu et al. 2013). Here, the 
main challenge is to set a threshold that separates the 
damage and non-damaged areas, which is challenging for 
low-resolution images and when large level of noise is 
presented. 

A different approach for estimation of damage 
scenario is used in seismic risk analysis. Here, based on 
survey of previous events or numerical simulations, it is 
proved that an asset (i.e., buildings, bridges or structural 
elements) are more likely to experience damage when the 
engineering demand parameter (EDP), such as strong-
motion intensity or tsunami inundation height, is large. 

The approach uses fragility curves, which gives the 
probability that an element under a certain level of EDP 
has reached or exceeded certain level of damage 
(Koshimura et al. 2009). 

This paper introduces a novel procedure in which a 
combination between change detection of a pair of SAR 
satellite image and spatial distribution of the EDP. 
 

2.� PRINCIPLE OF THE METHOD 

A method to detect damages from satellite images 
consists on mapping changes of backscattering for SAR 
data or sun reflectance radiation for optical images. 
Those changes are mainly based on thresholds such as 
the proposed by Liu et al. (2013). During this process, 
uncertainties in the damage classification due to speckle 
noise and/or low resolution of the image are introduced. 
Furthermore, if the dates of the pre- or post-event image 
are far from the disaster date, modifications of the surface 
due to other reasons (i.e., new construction and 
harvesting activities) than the disaster might be leading to 
misclassification of the damaged areas. 

The method proposed in this paper attempts to improve 
the damage classification by including the spatial 
distribution of EDP. This will increase the dimensionality 
of the problem and enrich the data set. A flowchart of the 
methodology is shown in Fig 1, and the steps of the 
algorithm are as follows: 
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(1) Input a pair of pre- and post-event SAR images and 
the spatial distribution of EDP. The SAR images here 
were converted from digital number to sigma naught 
( ), which means that a preprocessing of the raw data 
has to be performed in advance. The EDP varies 
according to which natural disaster is been dealt. The 
strong ground motion intensity for earthquakes (PGV, 
PGA, etc) and the tsunami inundation depth are such 
examples. 
(2) Calculate the parameters d and r using the pair of 
SAR images. For a given pixel, d and r are the difference 
of the average backscattering and the correlation 
coefficient of surrounding pixels limited by a specified 
window, respectively. 
(3) Define the tile units. Tiles are rectangular segments 
considered as units, where its damage classification is 
desired. For each tile an average of d and r are associated. 
In this paper a tile is selected as the unit. However, other 
options such as pixel based or areas based on 
segmentation can be used.  
(4) Extract the magnitude of the EDP for each unit. 
(5) The tiles are grouped into bins by ranges of EDP, 
where the ranges are defined in order to have 
approximately the same number of tiles in each bin. 
(6) Here, the main part of the method begins. The 
purpose here is to find an improved linear threshold with 
the aid of the spatial distribution of EDP.  
First, an initial value of the vector parameter (x=[x1, x2]) 
for the threshold line: r=x1+x2d is defined. Tiles with its 
pair values (d, r) below the threshold line are classified as 
damaged. Then, a fragility curve; i.e., a logarithmic 
cumulative Gaussian distribution function is fitted and 
the error between the damage ratio of the tiles and the 
fragility curve is stored. Details about the fitting process 
and further literature is found in Koshimura et al. (2009) 
and Mas et al. (2012). 
(7) The next step is an iterative process to find the 
parameters that minimizes the fitting error between the 
damage ratio and the fragility curve, hereafter referred as 
cost function. Figure 1, shows a grid search approach. A 
grid search algorithm demands significant, however, 
other algorithms to find global minimum are possible to 
replace here. At this stage we aim to present the method 
pipeline and observe the surface of the cost function 
produced in the bi-dimensional space of x1 and x2.  
(8) Use the final threshold line to map the damage 
distribution. 
 

3.� EXPERIMENTAL RESULTS AND 
ANALYSIS 

To demonstrate the performance of the method, the 
2016 Mw 7.0 Kumamoto earthquake is selected as case 
study. The event was composed of two big earthquakes, 
the denominated foreshock (April 14, 2016) and the 
mainshock (April 16), and subsequent aftershocks. The 
mainshock produced extensive damage in Mashiki town 
and some parts of Nishihara village, Kashima and Mifune 
towns (Figure 2c).   

Two ALOS-2 PALSAR-2 intensity images taken on 
March 07 2016 and April 18 2016 are used for the 
change detection analysis. The images were acquired in 
StripMap mode with HH polarization. The incident angle 
is 32.8 degrees and the path was descending. The 
backscattering coefficient (sigma naught) is obtained 
from the intensity images after a radiometric calibration, 
terrain correction and Lee filter. The parameters d and r 
are calculated with a window size 3x3 pixels. 

The tiles are square segments of approximately 130 x 
130 m2 (green squares shown in Figure 2c). Tiles were 
selected under the criterion that each tile has at least 30 
buildings inside it in order to evaluate areas with high 
density of buildings. The georeferenced building 
inventory used to define the tiles is shown as blue 
polygons in Figure 2b. The building inventory was 
obtained from the Geospatial Information Authority of 
Japan (GSI). A total of 1277 tiles were defined 
 

 
Figure 1 flowchart of the proposed method 
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Figure 2 Location of the case study. (a) Location of the SAR images in Kyushu island, Japan and the pre-event SAR 
image. (b) Study area. Blue and yellow poligons represent the building foot print and the truth data, respectively. (c) 

Distribution of the PGV and tiles (green polygons). 

 
Figure 3 (a) slope of linear fitting between bins and 
damage ratio. (b) Cost function. 
 

 
Figure 4 Best fitting of the damage ratio and a 
logarithmic cumulative distribution function.  

 

 
Figure 5 Spatial distribution of damaged (red tiles) 

and undamaged (green tiles) areas. 

The spatial distribution of PGV is selected as the EDP 
(Figure 2c). The reason on behalf of this choice rely on 
the proposed empirical fragility curves for buildings in 
Japan (Yamazaki and Murao, 2000), where the PGV was 
selected as EDP. The PGV map was obtained from the 
QuiQuake system, a web-based system for estimation of 
strong ground motion maps (Matsuoka and Yamamoto 
2012). The original resolution of 300 m was resampled to 
10 m by cubic interpolation. 

Figure 3b shows the cost function surface of the fitting 
process expressed as shade colors. Errors close to zero 
are observer in a wide area (dark blue). However, those 
cases occur for thresholds that produce 100% or 0% of 
damage ratio in all bins. Although totally collapsed or 
zero collapse of building is indeed theoretically possible, 
in practice remote sensing is used when a presence of 
damaged is implicit. Furthermore, the extension of a 
satellite image usually covers an area bigger than the 
affected area. Thus, we filter damage scenarios that does 
not shows an increment in the damage ratio when the 
PGV increases. Figure 3a shows the slope of a line fitted 
from the bin-damage ratio relation. We filtered the 
damage scenarios that show slope values under half of 
the maximum computed value in order not to consider the 
cases mentioned above. Although not shown here, the 
50% criterion does not have big effect on the results.  
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Figure 6 Scatter plot of the parameters r and d for buildings footprint and the threshold defined by the proposed 
method (black line). (a) undamaged buildings as blue marks and damaged building as red marks. (b) density 
points of undamaged buildings. (c) density points of damaged buildings. 

 
The same results were obtained filtering results with 
slope less than 10% of the maximum computed value. 

Figure 4 shows the final logarithmic distribution 
function obtained using the parameters that produced the 
lowest cost function among those scenarios shown before. 
The final threshold is expressed as follow: 

  dr 50.011.0 ���   (1) 
It is observed that all bins shows damage ratio greater 

than 40%, which seems very high. Figure 5 shows the 
spatial distribution of the damaged area. The results show 
concentrated damage in Mashiki town, which shows 
good agreement with previous reports (Yamazaki and Liu 
2016). However, overestimation of damage is observed 
in Kumamoto city. 

In order to evaluate the performance of the method, 
Figure 6 shows the proposed threshold overlapped with 
the parameters (r and d) calculated for damaged and 
undamaged buildings estimated from Lidar data (Moya et 
al. 2016). Figure 6a shows the scatter plot of damaged 
(blue marks) and undamaged (red marks) buildings, 
where a complete overlap between them. This is the main 
reason of an overestimation in our results. The damaged 
and undamaged buildings are shown separate in Figure 
6b and Figure 6c, respectively. The color shade express 
density of points, where the red color shows area whit 
high density. It is shown that our method is doing the 
best to separate the two areas in which the damaged and 
undamaged buildings are concentrating. 
 

4.� CONCLUSSION 

This paper presents a novel method that combines 
SAR imagery and strong motion distribution to estimate 
building damage. The fundamental basis of the method is 
that the final damage scenario estimated from a threshold 
of the parameters d and r should produce a logarithmic 
cumulative distribution function between the strong 
motion magnitude and the damage ratio. 

Verification of the method during the 2016 Kumamoto 
earthquake has shown that the estimated threshold 
divided the main part of the undamaged buildings with 
the damaged buildings. However, the results show an 
overestimation of the damage distribution because the 
data set shows a remarkable overlapping between 
damaged and undamaged building. 

It is important to point out the versatility of the method 
in the sense that it does not require training data 

(unsupervised classification) and it can be used for other 
natural disaster as long as the EDP can be quantified. For 
instance, wave height can represent the EDP for a 
tsunami event.  
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