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ABSTRACT: Polarized SAR images have been extensively used recently for monitoring urban and suburban areas. 

Since different polarizations represent different scattering coefficients of the same target, they can be used to prepare 

land cover maps, which contain vital information for several fields, such as environmental science, seismic risk 

assessment, urban management and planning. SAR amplitude data have been used mostly for obtaining the ground 

surface information whereas phase data can provide more information of the ground objects. Therefore, in this 

research, full polarized data of ALOS-2 PALSAR-2 with 5.13-m resolution in an ascending path were used to classify 

various land covers in Kumamoto, Japan. Accordingly, the Yamaguchi-4 decomposition was applied on the 

polarimetric dataset of the study area. Since the Yamaguchi-4 decomposition provides surface, volume, double 

bounce, and helix scatterings, it can be effective for classifying not only natural objects on the ground but also for 

man-made structures with different orientations. The Support Vector Machine (SVM) algorithm was used for 

supervised classification by the Yamaguchi-4 decomposition. The confusion matrix with the kappa coefficient, 

overall-, producer-, and user-accuracies were prepared for the classification results to be compared with the truth data. 

This research aims to explore the potential of the decomposition method for classifying various land covers of urban 

and suburban areas. 

 

1. INTRODUCTION 

Remote sensing data have been used widely in recent decades for monitoring and detecting manmade and natural 

objects on the ground (Moya et al., 2017; Lacerda et al., 2016; Immitzer, 2012; Zakeri et al., 2016). Land cover 

classification is an essential part of remotely sensed image analysis because it provides vital information in several 

applications such as urban planning, seismic risk assessment, ecological and urgent environmental monitoring in 

regional and global scales (Colaninno et al., 2012; Molch, 2000; Rathje and Adams, 2008; Yamazaki et al., 2011; Liu 

et al., 2013; Yamazaki and Liu, 2014). Remote sensing data provided by optical sensors have been commonly used 

for classification of various land covers such as different types of vegetation, urban, suburban, wetland, soil, and etc. 

But optical remote sensors are dependent on weather and time conditions. Therefore, there is a limitation for capturing 

optical images especially in emergency situations or for tropical regions.  

 

Several studies have been conducted using radar remote sensing and provided high accurate results. Nakmuenwai et 

al. (2017) extracted the inundated areas using multi-temporal dual polarized RADARSAT-2 images for the 2011 

central flood of Thailand. Liu and Yamazaki (2017) used multi-temporal PALSAR-2 images to detect collapsed 

buildings in the 2016 Kumamoto, Japan, earthquake. Bahri et al. (2015) used pre- and post-event images of ALOS-2 

for damage assessment of the 2015 Nepal earthquake. Zakeri et al. (2017) conducted land cover classification of 

Tehran using dual polarized ALOS-2 and Sentinel-1 images.  

 

ALOS-2 SAR products were chosen to use in this study. Advanced Land Observing Satellite 2 (ALOS-2) was 

launched on 24 May 2014 with an enhanced L-band SAR sensor, Phased Array type L-band Synthetic Aperture 

Radar-2 (PALSAR-2). It can capture images in right and left path directions. One of the objective of ALOS-2 is 

updating of land covers. ALOS-2 images have been used in several studies for land cover classification with high 

accuracy results (Mi et al., 2014; Walker et al., 2010). In this study, we used full polarimetric (HH, HV, VV, VH) 

images of ALOS-2, which were taken on August 11, 2016 for classifying various land covers of Kumamoto, Japan.  

 

The Kumamoto prefecture was the most severely affected area in the 2016 Kumamoto earthquake. The Kumamoto 

earthquake was a series of earthquakes including Mw 7.0 main-shock on April 16, 2016 at 16:25 (UTC) or 01:25 

(JST), and the Mw 6.2 foreshock on April 14, 2016 at 12:26 (UTC) or 21:26 (JST). The earthquake sequence caused 

significant damage to buildings, infrastructures, and road networks. The number of casualties was 50 due to direct 

causes and the number of evacuees at the peak of the earthquake was about 200 thousands according to the report of 

the Japanese Red Cross, published on 17 May 2016 (USGS, 2016; Japan Red Cross, 2016). Several studies have been 

conducted after the 2016 Kumamoto earthquake on the affected area (Goken et al., 2017; Liu and Yamazaki, 2017) to 

mailto:homa.zakeri@chiba-u.jp
mailto:fumio.yamazaki@faculty.chiba-u.jp
mailto:wen.liu@chiba-u.jp


 

 

detect the changes and damaged areas.  

 

In this study, we used a decomposition method to achieve better backscattering characteristics of the ground objects 

using the ALOS-2 full polarimetric dataset. This methodology, which is known as target decomposition, provides 

physical and geometrical properties of the ground surface. Indeed, it separates the objects’ scattering matrix into 

individual components that are related to respective scattering mechanisms (Cloude, 1997). Therefore, we can obtain 

more information on land cover classification. The Yamaguchi-4 decomposition (Yamaguchi et al., 2005) is selected 

since it includes four different components, such as double bounce, surface, volume, and helix, which can represent 

the scattering mechanism of different ground objects including urban structures. Then the Support Vector Machine 

(SVM) classification was applied on the result of the decomposition and the result was compared with the 

classification map prepared by JAXA.  

 

2. THE STUDY AREA AND DATASET 

The study area of this research is located in Kumamoto, Japan as shown in Figure 1, which is placed above the 

Futagawa fault. The study area was selected for this research because it contains a part of Kumamoto city and Mashiki 

town which were severely affected by the 2016 Kumamoto earthquake. Also this area includes various land covers 

that can be used to test the methodology of this study for the purpose of land cover classification. 

A full polarimetric dataset of ALOS-2 PALSAR-2 was used for the analysis in this study. The full polarized image of 

ALOS-2 was taken on August 11, 2016 in the strip map mode, with the incident angle of 33.86º at the center of the 

image, and the spatial resolution of 5.13 m. The SAR images were provided  as the  range  and  single-look  azimuth  

compressed  data  with  the  processing  level  1.1, which  is  represented  by  the  complex  I  and  Q  channels  to  

preserve  the  amplitude  and  phase  information. The objective of this study is to use phase information of SAR 

images for land cover classification of the study area. Therefore, the pre-processing for the phase dataset including 

four methods were applied on the ALOS-2 full polarized images. The first step of pre-processing includes preparation 

of the coherency matrix, 
3T . Therefore, the scattering matrix, S, which represents polarimetric SAR measures based 

on the horizontal (H) and vertical (V) polarizations, is shown as: 
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For a monostatic backscattering case, the target vector becomes:  
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The 3x3 coherency matrix, 3T , is given by:                                                                        
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where H represents the transpose conjugate. The resulting 3T has nine independent elements.  

Then, the refined Lee filter of window size 13×13 with the number of looks equal to one was applied on the dataset to 

remove speckle noise of the images. The number of the look of SAR data was used to estimate the standard deviation 

of the speckle noise. Afterward, orientation angle correction was applied on the dataset to make the horizontal 

polarization parallel to the ground terrain slope. Geometric correction using the range Doppler orthorectification 

method was used to represent the data geometrically similar to the real world. The Shuttle Radar Topography Mission 

(SRTM) data were introduced as one arc-second (approximately 30-m resolution) digital elevation model (DEM).  



 

 

 

Figure 1 The location of the study area (yellow frame) and SAR datasets (red frame). 

3. METHODOLOGY  

The overall framework of this study is shown in Figure 2. This framework contains five steps: pre-processing, 

Yamaguchi-4 decomposition, layer stacking of decomposition values, supervised classification (SVM), and accuracy 

assessment. After pre-processing, the polarimetric decomposition was used to introduce the physical characteristics 

of objects on the ground. The decomposition methods, which produce various scatterings such as surface, volume, 

double bounce, helix, wire, etc., can provide more information from different properties on the ground with different 

orientations, materials, and structures. Therefore, the use of decomposition methods would be sufficient for 

classifying an area with different land covers. Since the objective of this study is land cover classification of urban and 

suburban areas including various man-made structures and natural land covers, the Yamaguchi-4 decomposition with 

the capability of preparing double bounce, volume, surface, and helix scatterings was selected. The double bounce 

scattering represents man-made objects such as built-up areas. The volume scattering illustrates vegetation and 

buildings in different orientations with respect to the radar illumination. The surface scattering demonstrates bare 

soils, crop lands, snow, and volcano ashes. The helix scattering represents complicated man-made structures. 

The previous approaches have used the reflection symmetry condition, which introduces the covariance between the 

backscatter HH, and the conjugate of the backscatter HV is close to zero as follows: 

                                                                                     0* HVHH SS                                                                   (4) 

                                               0* VHVV SS                                                                     (5) 

Thus, from the covariance matrix, the four components, which are shown in black frames, becomes zero as follows: 
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where  denotes the total average of data processing and * denotes the complex conjugate. 

 Then the covariance matrix is decomposed into three components as follows:  
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where   HV
C corresponds to spatial average of the data, and   hv

C denotes the mathematical average calculated 



 

 

by an integration expression. The fs, fd, and fv stand for the coefficients of surface, double bounce, and volume 

scatterings.  

This model is based on the simple physical scattering mechanism. Although it is a powerful method to investigate 

natural targets on the ground surface, the reflection symmetry condition is not true in urban areas (Yamaguchi et al., 

2005; Yamaguchi et al., 2006; Yajima et al., 2008). To overcome this issue, Yamaguchi et al. (2005, 2006) proposed 

a new decomposition method. In this method, the reflection symmetry is not considered zero as follows: 

                                                                                     0* HVHH SS                                                                 (8) 

                                                                                     0* VHVV SS                                                                       (9) 

Therefore, all the nine components of the covariance matrix (3x3) are decomposed into 4 components as follows: 
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Four different Yamaguchi-4 scatterings are shown in Figure 3. Figure 4 shows the result of Yamaguchi-4 

decomposition, where red, green, and blue colors represent the double bounce, volume, and surface scattering. Figure 

5 illustrates four different Yamaguchi-4 decomposition scatterings including surface, volume, double bounce, and 

helix. 

 

Figure 2 Flowchart of land cover classification using SAR data in this study. 

 
(a)  (b)  (c) (d) 

Figure 3 (a) Surface, (b) volume, (c) double bounce, (d) helix scatterings of Yamaguchi-4 decomposition. 



 

 

 

Figure 4 Color composite of Yamaguchi- 4 decomposition with the window size of 13x13 for the study area.  

 

(a) Double bounce scattering  (b) Helix scattering 

 

(c) Surface scattering        (d) Volume scattering 

Figure 5 Components obtained by Yamaguchi-4 decomposition values with the window size of 13x13. 

The SVM algorithm is selected for supervised classification of various land covers in this study. Supervised 

classification is a training based methodology. In this method, similar pixel values to training samples are classifid 

and grouped into a considered number of land cover classes (Zakeri et al., 2017). Therefore, selecting training 

samples is a vital step in this research. After monitoring the study area, seven land covers including bare land, crop 

and grass, paddy, forest, water, and two different built-up areas were chosen as shown in Figure 6. Built-up_1 class is 

composed of regular Japanese style buildings with gable roofs, and mostly with one to three floors. Built-up_2 class is 

composed of individual buildings with mostly flat roofs and taller than built-up_1 buildings. Built-up_2 buildings are 

surrounded by wider roads and open spaces, comparing with those in built-up_1, as shown in Figure 6.  



 

 

The SVM classification was applied on the layer stacking of Yamaguchi-4 scatterings. The radial basis function was 

used for SVM classification. C and   are important parameters of this kernel function. The cross-validation was 

prepared to evaluate the parameter values of C and    that produce high accuracy classification results. We extracted 

7,000 samples (100 per class) randomly. The result of cross-validation shows that values of 10.0 and 0.1 provide the 

highest accuracy of input data for parameters C and  , respectively. To check the accuracy of the supervised SVM 

classification, the confusion matrix was constructed using a land cover map that prepared by JAXA as truth data. This 

method is a standard way for evaluating classification accuracy in remote sensing (Paneque-Gálvez et al., 2013). The 

kappa coefficient, overall accuracy, user and producer accuracies were calculated for the confusion matrix. 

4. THE RESULT AND DISCUSSION 

This study attempts to classify various land covers of the Kumamoto area with high accuracy using the ALOS-2 full 

polarimetric dataset and an appropriate methodology. The result of SVM classification using the layer stacking of 

Yamaguchi-4 decomposition values is shown in Figure 7(a). 

 

To assess the accuracy of the SVM classification, the confusion matrix was provided using the truth data. This truth 

data prepared by the Japan Aerospace Exploration Agency using multi-temporal optical images, which were taken in 

different seasons (JAXA, 2017). The overall accuracy and the kappa coefficient of 78.0 % and 0.745 were obtained 

respectively for the JAXA land cover map. The truth data is shown in Figure 7(b), covers the whole target area of this 

study. This map included four different vegetation types, which have been merged into one vegetation class in this 

research. Also, crop and grass classes were merged because of the same reason as vegetation class. Since only one 

urban class is considered by JAXA, two different built-up types, 1 and 2, were merged to make a comparison with the 

JAXA map as shown in Figure 7(c).  

 

The confusion matrix for the classification result was prepared using the truth data provided by JAXA. The confusion 

matrix is shown in Table 1. The table shows that the overall accuracy and kappa coefficient of 63.29 % and 0.50, 

respectively. The diagonal elements in this table show the correctly classified pixels in each land cover class. The 

results of the producer and user accuracies depict that urban and forest classes have the highest accuracies among all 

the land cover classes. The producer and user accuracies of urban class were 83.57 % and 60.98  %, respectively. Also, 

the producer and user accuracies of the forest class were 71.98 % and 83.72 %, respectively. 

 

 

 
  

 

Figure 6 Training samples obtained from ALOS-2 AVNIR-2 of the study area.  



 

 

 

(a) 

  

(b) (c) 

 

 

Figure 7 (a) Result of the SVM classification prepared by polarimetric Yamaguchi-4 decomposition values; (b) the 

land cover map prepared by JAXA, and (c) the cover map created according to the result shown in (a). 

Table 1 Confusion matrix of the SVM classification result using polarimetric Yamaguchi-4 values (4 layers). 

 

Land Cover Classes of Truth Data 

User 

Accuracy 
(%) 

Land Cover 

Classification 
from Satellite 

 

 

Water Urban Paddy Forest 
Crop 
and 

Grass 

Bare  
land Total 

 
Water 19215 17208 22295 448 75434 5097 139697 13.75 

Urban 15559 2026474 332887 299963 611675 36601 3323159 60.98 

Paddy 9887 36194 385912 973 96397 9223 538586 71.65 

Forest 4012 117841 23048 1963263 235034 1744 2344942 83.72 

Crop and 
Grass 50482 22215 371625 461569 1339463 30139 2475429 54.11 

Bare land 4472 5017 120994 1462 107745 2914 242604 1.20 

Total 103627 2424885 1256761 2727678 2465748 85718 9064417  

Producer Accuracy (%) 18.54 83.57 30.71 71.98 54.32 3.40  63.29 

Kappa Coefficient 0.50 

 



 

 

5. CONCLUSION 

In this research, the Yamaguchi-4 decomposition was applied to an ALOS-2 polarimetric dataset to obtain more 

information from the SAR image for the purpose of land cover classification. This methodology was selected for 

improving the supervised classification of SAR images for urban areas. Kumamoto area was chosen as the study area 

since this area was affected by the 2016 Kumamoto earthquake and needed to be monitored and classified after the 

event. Full polarized data from L-band ALOS-2 (HH, HV, VV, and VH) were employed and Yamaguchi-4 

decomposition values including double bounce, surface, helix, and volume scatterings were prepared. Then SVM 

algorithm was used for supervised classification of the dataset. Radial basis functions with values 10.0 and 0.1 

parameters C and  , respectively were used. The SVM classification was conducted in seven land covers including 

bare land, crop and grass, paddy, forest, water, and two different built-up areas (built-up 1 and 2). The result of SVM 

supervised classification was compared with the land cover map provided by JAXA. The result showed that the 

Yamaguchi-4 decomposition obtained an acceptable level accuracy. The urban and forest land cover classes showed 

the highest producer and user accuracies among all the classes.  
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