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ABSTRACT 

In conducting damage assessment for scenario earthquakes in high seismic risk regions, building 

inventory data are required as well as building fragility functions and strong-motion distributions. But 

inventory data with the locations and characteristics of buildings are not so easy to construct, 

especially for developing countries. Hence in this study, an approach to construct building inventory 

data is sought as an alternative of cadastral data and field surveys. Using a high-resolution optical 

satellite image acquired by WorldView-2, this paper tries to develop building inventory data for 

earthquake damage assessment in Tacna, Peru. First, Pixel-based classification was carried out to 

examine basic land-cover and land-use of the urban area. Object-based building extraction was then 

conducted for three selected areas as an attempt to develop building inventory data. 

 

Keywords: object-based classification, WorldView-2, building extraction, damage assessment, 

building inventory

 

INTRODUCTION 

Building inventory data are necessary elements in seismic damage assessments, together with 

building fragility functions and strong-motion distributions. But inventory data with the locations and 

characteristics of buildings are not so easy to construct from the view point of labor and costs, for the 

countries with high disaster risks. A common practice to develop building inventory data is the use of 

cadastral (land tax register) data with supporting field validation. But cadastral data are not often 

prepared in the form to be used in earthquake damage assessment, especially in developing countries. 

Thus, GEM (Global Earthquake Model) Foundation [1] recently initiated a research project on 

Inventory Data Capture Tools (IDCT) to develop open source tools to generate information and 

models on building inventory from remote sensing [2, 3] and field observations [2].   

Several very high-resolution (VHR) optical satellites with ground-resolution of 1 m or less have 

been launched and in operation in the last decade. Ikonos, the first commercial high-resolution satellite 

with maximum spatial resolution of 1.0 m, launched successfully on 25 September 1999, and 

QuickBird, with a maximum resolution of 0.6 m, launched on 18 October 2001, are the first generation 

of this category. GeoEye-1 (launched on 6 September, 2008) and WorldView-2 (launched on 8 October, 

2009) with sub-meter ground-resolution are the second generation VHR satellites, succeeding Ikonos 

and QuickBird. 

Using imagery data acquired from these satellite multispectral sensors, a number of studies on 

urban modeling and damage detection from natural disaster have been carried out in the various part of 

the world [4, 5]. For example, Miura and Midorikawa [6] updated existing building GIS data for 

earthquake damage assessment, using an Ikonos image in Metro Manila, the Philippines. They were 

able to extract mid- and high-rise buildings by image processing, but a land-cover classification map 

had to be employed to estimate the number of low-rise buildings in densely built-up areas. Sarabandi 

et al. [7] tried to extract building inventory information such as height, shape and square footage from 

single high-resolution remotely-sensed images for London, UK, using a new MIHEA (Mono Image 

Height Extraction Algorithm) tool. Marangoz et al. [8] extracted buildings at a cultural heritage site in 
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Turkey by pixel-based and object-based supervised classification from Ikonos imagery and pointed out 

that object-based classification got higher accuracy in building extraction than pixel-based 

classification did. Applications of object-based classification in extraction of intact and damaged 

buildings were tried for QuickBird images before and after the 2006 central Java, Indonesia 

earthquake [9] and for digital aerial images before and after the 2007 Mid-Niigata-Oki, Japan 

earthquake [10]. Object-based classification gave better results than pixel-based one for these VHR 

images, but still questions remain on the selection of bands and other spatial data, and the 

determination of parameter values in object-based approach. 

In this study, as a first step to develop building inventory for earthquake damage assessment, 

object-based building extraction was conducted from a WorldView-2 image of Tacna City in the 

southern Peru. Pixel-based supervised classification was firstly applied to the whole city areas of 

Tacna to grasp overall land-cover and land-use. Secondly, based on the ratio of vegetation land-cover 

estimated from the classification and the population density from census data in each city-block, we 

chose three target areas for building extraction. Object-based supervised classification was then 

conducted for the target areas, and the result was discussed, comparing with that from visual 

inspection. 

 

SATREPS PROJECT AND STUDY AREA  

As one of research projects under the framework of “Science and Technology Research 

Partnership for Sustainable Development (SATREPS [11])”, under the joint sponsorship of Japan 

Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA), a bilateral 

joint research project entitled“Enhancement of Earthquake and Tsunami Disaster Mitigation 

Technology in Peru” has been carried out by Japanese and Peruvian researches since 2009 [12]. The 

project aims comprehensive research on earthquake and tsunami disaster mitigation in five main 

research topics: 1) Strong motion prediction and development of seismic microzonation; 2) 

Development of tsunami countermeasures based on numerical simulation; 3) Enhancement of seismic 

resistance of buildings based on structural experiments and field investigations; 4) Development of 

spatial information databases using remote sensing technology and earthquake damage assessment for 

scenario earthquakes; 5) Development of earthquake and tsunami disaster mitigation plan and its 

implementation into society. Metropolitan Lima and Tacna City were selected as two case study areas 

after preliminary surveys. As a part of SATREPS Peru project, this paper investigates the methodology 

of building inventory data development for Tacna.  

 

Figure 1. The study area including Tacna in southern Peru and the imaging area, plotted on 

Google Earth (left), and the false color composite of WorldView-2 image (right) 
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Scenario earthquake events for damage assessment for the project were determined based on 

recent studies [13, 14]. Two major historical earthquakes were selected for this purpose because these 

two events are the most damaging and are expected to have significant effects on Peru. The first event 

is the 1746 Lima-Callao earthquake (Mw 8.6) that destroyed the city of Lima completely and 

produced about 6,000 deaths. The second event is the 1868 southern Peru earthquake (Mw 8.8), which 

produced large tsunamis along the coasts of Peru and Chile. The earthquake almost completely 

destroyed Arica, Tacna, Moquegua and Arequipa areas, with about 25,000 deaths. The recurrence of 

these mega-earthquakes is anticipated along the Peru-Chile Pacific coast [15]. 

Tacna, the capital city of Tacna Region, is located in southern Peru, about 35 km north of the 

border with Chile, as shown in Figure 1. The city is in the valley of the Capina River, surrounded by 

desert and about 30 km inland from the Pacific Ocean. The city has the total population about 242,000 

and its average elevation is 552 m. 

A WorldView-2 (WV-2) image, shown in Figure 1, was taken on March 6, 2010 and the area of 

the image used in this study is shown with a yellow square. The resolution of the image is 0.5 m in the 

panchromatic (PAN) band and 2.0 m in the multispectral (MS) bands. Although the WV-2 sensor has 8 

MS bands [16], the image we purchased is a bundle product of PAN and 4 MS (Blue, Green, Red, 

NIR-1) bands. 

 

LAND COVER CLASSIFICATION AND SELECTION OF TARGET EXTRACTION AREAS 

In Peru, building inventory data have not been prepared as the use in damage assessment on a 

GIS platform. Hence, the construction of building inventory data is an important topic in disaster 

management research and practice. In conjunction with the SATREPS project, Estrada et al. [17] and 

Matsuoka et al. [18] have proposed methods to develop building inventory data from high-resolution 

satellite images (WV-2) together with some other geospatial data such as multi-temporal Landsat 

images, DEM, and census data. They demonstrated the method in Lima Metropolitan area and the 

results were compared with field survey data and visual inspection results of VHR images. But due to 

the shortage of ground truth data, validation is still necessary for practical applications. Thus we 

attempt a similar case study for Tacna to extract building inventory data from the VHR satellite image.  

The extraction of buildings from an object-based analysis has to examine the most suitable 

parameters for different type of buildings (e.g., detached house, apartment building, factory) and their 

 

Figure 2. Training data selected for the 8 land-cover classes and their mean DN values for 

the 4 MS bands of the WV-2 image 
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surrounding condition (e.g., built-up density, vegetation, topography). Considering the spatial 

distribution of different type of buildings within Tacna City, land-cover classification was conducted 

for the WorldView-2 MS image to access general land-cover and land-use of the city. 

As a first step, K-means unsupervised classification was attempted by changing the number of 

classes in order to determine the suitable land-cover classes in supervised classification. Considering 

the result from unsupervised classification, the maximum likelihood supervised classification was 

conducted using 8 land-cover classes (white roof, blue roof, red roof, asphalt, concrete, vegetation, 

agricultural land, desert). Figure 2 shows the training data selected for the 8 classes and their mean 

digital numbers (DNs) for the 4 MS bands of the WV-2 data. The result of supervised classification is 

shown in Figure 3 (a). The result shows the distribution of vegetation along the river clearly. 

Then, the coverage ratio of vegetation class from the supervised classification within each city 

block was calculated and shown in Figure 4 (a). From this figure, a ratio of vegetation is seen to be 

high in the city center and very low in the south of the city. Using the national census data [19], the 

population density for each city block was also calculated as shown in Figure 4 (b). From the figure, 

many high-density blocks are seen in the northern part and many low-density blocks in the southern 

part of the city. From the combination of these two maps (vegetation and population density), the 

urban area of Tacna City can be divided into residential and commercial (or industrial) based on the 

population density, and then residential areas are further categorized into highly built-up residential 

and low-density residential based on vegetation.  

From this observation, we assumed three typical land-use types in the city, 1) area with mostly 

large buildings of commercial/residential use or industrial use, 2) residence area with high vegetation 

ratio, and 3) high-density residential area with low vegetation ratio. Then three 300m x 300m target 

areas were extracted as shown in Figure 3 (b) for typical examples of the three land-use types, and 

they were used for more detailed building extraction by object-based classification. 

 

Figure 3. The result of pixel-based supervised classification with 8 classes for the MS image (a) 

and the selected three target areas for detailed investigation (b) 
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SEGMENTATION AND OBJECT-BASED CLASSIFICATION 

Definiens Professional 5 software was used in performing object-based classification. First, image 

segmentation was conducted to make “objects”. The segmentation process is determined by 5 

parameters: Layer Weight, Compact Weight, Smooth Weight, Shape Factor, and Scale Parameter. 

Since Scale Parameter determines the object size, it is changed depending on the size of buildings to 

pay attention to. In this study, Scale Parameter is determined as 150, 100, 80 for the large building, 

low-density residential, and high-density residential areas, respectively. Shape Factor determines the 

importance level of spectral heterogeneity or shape heterogeneity in segmentation. When the shape 

factor moves toward 0, spectral heterogeneity is more concerned. On the contrary, if it moves toward 

0.9, shape heterogeneity is more concerned. In this study Shape Factor was determined as 0.9 in order 

to extract building edges. In further details, the spectral heterogeneity is decided by Layer Weight, 

which gives the weight for each band. It is assumes as 1.0 for each band here. The shape heterogeneity 

is decided by Compact Weight and Smooth Weight. Bigger Compact Weight indicates that the 

segmented objects are in more compact shape. Alternatively, bigger Smooth Weight shows that the 

segmented objects are in more smooth shape. Compact Weight and Smooth Weight were determined as 

0 and 1.0, respectively since the outlines of buildings are linear. The result of segmentation is shown 

Figure 5 (left). Because of the selection of proper values for Scale Parameter, the results of 

segmentation for buildings are seen to be reasonable. 

Next, Nearest-Neighbor (NN) supervised classification was conducted for the objects created by 

the segmentation step. The number of classes for the large building area (a) and the high-density 

residential area (c) is 7 while that for the low-density residential area (b) is 8, by adding “Water” class. 

The result of object-based classification is shown Figure 5 (center). In area (a), apartment buildings 

and factories with uniform roof-color were classified correctly. However, a basketball court whose 

color is similar to that of blue-roof was misclassified. In area (b), the outlines of buildings could not be 

extracted so well, but the locations of buildings could be estimated from the objects classified as 

building roofs. In area (c), since building roofs are located very close one another with complicated 

shapes and colors, the extraction of building outlines was difficult by object-based classification and 

even by manual interpretation. Thus, instead of extracting individual buildings, the extraction of 

blocks surrounded by roads may be more suitable in high-density areas. The number of buildings in 

each block can be estimated through field surveys and census/cadastral data. 

 

Figure 4. (a) Ratio of vegetation obtained by pixel-based supervised classification and (b) 

population density obtained from national census data for each city block 
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BUILDING EXTRACTION AND EVALUATION OF ACCURACY 

In order to perform quantitative evaluation on the accuracy of building extraction, building 

footprints were drawn manually for the large building and low-density residential areas and 

city-blocks surrounded by roads were drawn manually in Figure 5 (right) together with the extracted 

roof objects by object-based classification. The accuracy of building extraction is measured by 

comparing the areas covered by buildings (city blocks in the high-density residential area) or other 

materials in the truth data and the supervised classification results, shown in Tables 1-3. The user 

accuracy represents the correct answer rate that the area extracted by object-based classification 

overlaps with the area extracted manually, and the producer accuracy shows the ratio how much area 

extracted manually was extracted by object-based classification. 

In the large building area, the user accuracy was very high as 87.6% for buildings. The user 

accuracy was also high as 75.7%. Hence the accuracy of object-based classification is considered to be 

high if buildings are large enough, compared with the image resolution and they are standing alone 

surrounded by open space. In the low-density residential area, the producer accuracy for buildings was 

low (47.6%) while the user accuracy was rather high (75.2%). This indicates that many houses were  

 

Figure 5. Result of segmentation (left), object-based classification (center), and extracted 

regions and building outline made manually (right) for the three target areas 
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classified as other classes because roof colors and materials in the area had wide variation, including 

those similar to road and ground. 

In the high-density residential area, the user accuracy for block extraction is as high as 89.5%, but 

the producer accuracy was not so high (68.3%). This example shows the difficulty in the extraction of 

buildings in densely built-up areas, even in a block level. The extraction method for roads may ease 

this difficulty somewhat.  

 

CONCLUSION 

Building inventory data are necessary in conducting damage assessment for scenario earthquakes 

in high seismic risk regions. But such inventory data with the locations and characteristics of buildings 

are not so easy to construct, especially for developing countries. Hence in this study, an approach to 

construct building inventory data is sought using a high-resolution optical satellite image acquired by 

WorldView-2, covering Tacna in southern Peru. First, pixel-based classification was carried for the 

multispectrum (MS) image in order to examine basic land-cover and land-use of the urban area. From 

this analysis, a ratio of vegetation-class land-cover in each city-block was evaluated as well as other 

land-cover classes. Together with the population density evaluated from census data, the 

characteristics of the whole city area were evaluated in terms of vegetation and pupulation density. 

Three areas were selected such as 1) Area with large buildings, 2) Low-density residential, and 3) 

High-density residential. By selecting 300m x 300m small areas representing the three land-use types, 

object-based classification was carried out. Image segmentation was conducted first considering the 

size of buildings in each area. The object-based supervised classification was then carried out for the 

segmentation results, and the classification results were compared with manually produced building 

footprints for area types-1 and -2, and city-blocks for area type-3. The error matrices for the three 

areas showed that extraction of indivisual buildings has high accuracy for Areas 1 and 2, but the 

extraction of blocks sometimes falls in difficulty for Area 3. Since this paper provided only 

preliminary examination, a more comprehensive study is now on going. 

Table 1. Error matrix of extraction for the large building area 

            Visual Inspection (m
2
) User's 

Accuracy     Building Others Sum 

Extraction 

Result (m
2
) 

Building 7874  1112  8986  87.6 % 

Others 2526  19818  22344  88.7 % 

Sum 10400  20930  31330    

Producer's 
Accuracy 

  75.7 % 94.7 % 
Overall 

Accuracy 
88.4 % 

      
Table 2. Error matrix of extraction for the low-density residential area 

             Visual Inspection (m
2
) User's 

Accuracy     Building Others Sum 

Extraction 

Result (m
2
) 

Building 6904  2274  9179  75.2 % 

Others 7608  73213  80821  90.6 % 

Sum 14512  75488  90000    

Producer's 
Accuracy 

  47.6 % 97.0 % 
Overall 

Accuracy 
89.0 % 

 

Table 3. Error matrix of extraction for the high-density residential area 

          Visual Inspection (m
2
) User's 

Accuracy     Building Block Road Sum 

Extraction 

Result (m
2
) 

Building Block 12435  1456  13891  89.5% 

Road 5771  8253  14024  58.8% 

Sum 18206  9708  27915    

Producer's 
Accuracy 

  68.3% 85.0% 
Overall 

Accuracy 
74.1% 
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