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ABSTRACT 

Hyperspectral remote sensing makes it possible to obtain detailed spectral information of surface 

objects. Using airborne hyperspectral (HS) data acquired over Houston, Texas, USA, provided by the 

2013 IEEE data fusion contest, the spectral reflectance characteristics of surface materials were 

investigated. A multispectral (MS) image acquired by WorldView-2 satellite was also introduced and it 

was compared with the HS image. A field measurement using a handheld spectroradiometer (EKO 

MS-720) was also carried out by the present authors. The irradiances of surface materials obtained by 

the measurement were also compared with the digital numbers of the 144 HS bands. Finally 

supervised classification was conducted for the HS and MS data and their results were discussed. 
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INTRODUCTION 

Recent advancements of remote sensing technology have enabled fine identification of surface 

materials due to improved spatial, temporal and spectral resolutions of sensors. The improvement in 

spatial resolution of satellite optical sensors is most drastic and the resultant very high-resolution 

images are now widely available through Google Earth. Fine spatial-resolution also helps to identify 

detailed damage situation of urban areas due to natural disasters, e.g. earthquakes and hurricanes [1-4]. 

Urban environment is generally complicated, mixture of both natural land-cover (e.g. bare ground, 

water, vegetation) and man-made or impervious land-cover (e.g. roads, buildings). The distribution of 

land-cover classes is important for environmental management, disaster management and urban 

planning. There have been many researches focusing on the classification of vegetation in agricultural 

lands or forests. However, researches on the classification of man-made land-surfaces in urban areas 

are still limited due to their high complexity. Owing to the fine spectral resolution, hyperspectral 

remote sensing data have potential to classify artificial land-cover with different materials. 

Hyperspectral remote sensing technology has advanced significantly in the last few decades and its 

overview is provided in literature [5, 6]. Several airborne and spaceborne instruments with over 200 

spectral bands have already been developed and actually in use. Since hyperspectral imaging provides 

many narrow-banded images simultaneously, the acquired data should be compared with the spectral 

reflectance characteristics of surface materials from spectral library or by field observation [7].    

In this study, a fundamental study to classify urban land-cover and land-use was carried out using 

a dataset from the 2013 IEEE data fusion contest [8]. Firstly, the spectral characteristics for both 

natural surfaces and artificial structures are investigated using the airborne hyperspectral data covering 

a part of Houston, Texas, USA, and they are compared with the ground-based spectral observation 

results, conducted recently in Houston, Texas by the present authors. Supervised land-cover 

classification is then carried out for the hyperspectral data. In addition, land-cover classification is also 

conducted for a 8-band WorldView-2 image covering the same area and the result is compared with 

that from the hyperspectral data.  
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THE STUDY AREA AND IMAGERY DATA USED 

The Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society 

(GRSS) conducts Data Fusion Contest in the recent years. The 2013 Contest involves two datasets – a 

hyperspectral image and a LiDAR derived Digital Surface Model (DSM), both at the same spatial 

resolution (2.5 m). The datasets were acquired over the University of Houston's campus and its 

neighboring urban area, Huston, Texas, USA [8]. In this paper, we use this hyperspectral image for 

investigating the capability of hyperspectral data for land cover classfication in urban areas.  

Figure 1 shows the study area including the University of Houston's campus and the neighboring 

area. The airborne hyperspectral image was acquired on June 23, 2012 between the times 17:37:10 to 

17:39:50 (UTC), by the NSF-funded Center for Airborne Laser Mapping (NCALM). Note that the 

local starndard time in Texas is UTC -6 hours, and thus the image was taken about 20 - 23 minutes 

before noon. CASI-1500 visible to near-infrared (VNIR) hyperspectral sensor [9, 10] was used for the 

aerial observation and the acquired image consists of 144 spectral bands (up to 288 bands) in the 380 

nm to 1050 nm region, that has been calibrated to at-sensor spectral radiance units [8]. The average 

height of the sensor above ground was about 5,500 ft (1,676 m). 

A multispectral image acquired by WorldView-2 (WV2) satellite on October 16, 2010 at 17:27:02 

(UTC) was also introduced in this study (Figure 1) for the purpose of comparison with the 

hyperspectrl image. The WV2 imagery consists of a Panchromatic band (0.5 m resolution) and 8 

multispectral (2.0 m resolution) in the 425 nm to 950 nm region. Considering the difference of spatial 

 

 

Figure 1. The study area including the University of Houston campus and the neighboring 
urban area in Houston, Texas, USA and imaging areas of hyperspectral and multispectral data.  

 

 

Figure 2. True color composites of the hyperspectral image (top) and the multispectral image 
(bottom) for the CASI-1500 imaging area. The red square shows the study area.     
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resolutions between the hyperspectral and multispectral datasets, pansharpening was not applied to the 

WV2 data. Figure 2 compares these two imagery data for the CASI-1500 imaging area. Because of 

the cloud cover seen in the hyperspectral image, the area with the red square was selected for a 

detailed investigation. These true color plots were made by selecting each band (B, G, R) having the 

highest value at WorldView-2's relative response ([11] shown in Figure 3) for the hyperspectral data 

and B (band-2), G (band-3), and R (band-4) for the multispectral image  

False color composite images (Figure 4) were also produced for the multispectral image (B: 

band-3, G: band-4, R: band-7) and for the hyperspectral image of the corresponding nearest bands 

(dotted lines in Figure 3). The false color composites showed that the a lot of vegetation, that is seen 

in red color, exists in the case study site. 

 

 
 

FIELD SURVEY AND SPECTRORADIOMETER OBSERVATION  

In order to obtain ground truth data on spectroradiometric characteristics of surface materials in 

the study area, a field survey was conducted by the present authors on August 6th and 7th, 2013. A 

hand-held MS-720 spectroradiometer [12] made by EKO Instruments Co., Ltd., Japan was used. We 

have used this instrument for several years, e.g. to measure the health condition of tsunami-affected 

vegetation [13] and the irradiance of sunlit and shadowed Earth surfaces [14].  

 

Figure 3. The relative spectral radiance response for WorldView-2 sensors [11] and the range of 
CASI-1500 hyperspectral sensor 

 

 

Figure 4. False color composites from the hyperspectral image (left) and multispectral image 
(right) corresponding to the red square in Figure 2  
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Figure 5 shows the field survey route by the present authors in the campus of Texas Southern 

University's football stadium and its surrounding area together with the locations and photos of three 

spectroradiometer observation points. The measurements were carried out in the times 15:45 to 16:45 

(the local standard time: UTC -6) on August 6 and 10:00 to 10:40 on August 7, 2013. The weather was 

basically sunny but sometimes cloudy. We measured the irradiances of several surface materials in the 

study area and that of a white ceramic plate for reference. It is by no means easy to collect field data 

on the same time and date of spaceborne or airborne data acquisition. So we conducted the survey on 

the occasion of our trip to the USA, but the data we collected were almost in the same season 

(summer) with the hyperspectral image acquisition.  

 

 

 

Figure 5. The field survey route (blue line) plotted on Google Erath by the present authors on 

August 6 and 7, 2013 in the campus of Texas Southern University's football stadium and its 

surrounding area, together with the locations and photos of three spectroradiometer observation 

points (a: lawn, b: artificial turf, c: concrete) 

 

 

Figure 6. The observed irradiances of three surface materials (a: lawn, b: artificial turf, c: 
concrete) by our spectroradiometer field observation (top) and the spectral ratio between the 
hyperspectral image and the field observation data (bottom) 
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Figure 6 shows the observed irradiances of three surface materials (lawn, artificial turf, and 

concrete) by our spectroradiometer field measurement. In order to compare these results with the 

hyperspectral imagery data (DN: Digital Number), we plotted the irradiance values, instead of taking 

the irradiance ratio (reflectance) with respect to the white plate.  

 

COMPARISON OF HYPERSPECTRAL AND MULTISPECTRAL IMAGES AND THEIR 

SUPERVISED CLASSIFICATION 

Comparison of the hyperspectral (HS: CASI-1500) and multispectral (MS: WV-2) data was 

carried out the three surface materials (lawn, artificial turf, and concrete) shown in Figure 5. By 

extracting small areas (pixels) corresponding to these materials from the images, the averaged (with 

respect to pixels) digital numbers (DNs) are shown in Figure 7 for the airborne (CASI-1500) and 

satellite (WV-2) sensors. Because the HS data have 144 bands, the DN values with respect to the 

wavelength look like the surface irradiance measured in the field (Figure 6 top).  

In order to compare the airborne hyperspectral data with the field spectroradiometer data, their 

spectral ratio (the airborne DN / the field irradiance) was calculated and shown also in Figure 6 

(bottom). Although the denominator (irradiance) and the numerator (DN) carry different units, the 

ratio is almost constant values with respect to the wavelength, for the three surface materials. A high 

peak (about 940 nm) seen in the ratio plot corresponds to the trough in the field observation data, due 

the atmospheric absorption effect caused by H20 [6]. This observation supports that airborne 

hyperspectal sensing can provide the spectral reflectance characteristics of surface materials for a large 

imaging area, and thus it is quite useful to distinguish small change or difference in surface 

materials/conditions. 

 

 

Figure 7. Comparison of hyperspectral, averaged-hyperspectral, and multispectral data for 

the three surface materials (a: lawn, b: artificial turf, c: concrete) shown in Figure 5 
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Next, the comparison between the DN values from the airborne HS sensor (CASI-1500) and the 

satellite (WV-2) MS sensor was carried out. Because the HS data include as many as 144 bands, the 

DN values of these bands were averaged and converted to 8-band DN values corresponding to WV-2 

sensor (i.e. Coastal, Blue, Green, Yellow, Red, Red Edge, NIR1, NIR2) for comparison. The average 

digital number for the corresponding band i of WV-2 is calculated by Eq. (1) as  

𝐷𝑁𝑖 = ∑ 𝐷𝑁(𝜆𝑘𝑖
)𝑅𝑒(𝜆𝑘𝑖

)𝑘𝑖
  ∑ 𝑅𝑒𝑘𝑖
⁄ (𝜆𝑘𝑖

)   (1) 

where DN() is the observed digital number from the HS sensor at wavelength , Re() is the relative 

spectral radiance response value of WV-2 in Figure 3, ki is the effective HS band numbers for WV-2's 

band i whose Re() value is larger than 0.001. 

The averaged HS's DN value for each surface material looks to have a similar shape as that from 

the MS sensor. Since the WV-2 data are presented by 11 bits (0 - 2047) as in Ref. [11] while the 

dynamic range of CASI-1500 is 14-bits (0 - 16383) as in Ref. [9], the absolute value of their DN ratio 

has only relative meaning. The DN ratios for the three materials are compared in Figure 8. Although  

 

 

Figure 8. Comparison of the ratio between averaged-HS data and MS data for the three surface 

materials (a: lawn, b: artificial turf, c: concrete), shown in Figure 7 

 

 

Figure 9. Spectral characterization of hyperspectral remote sensing data [5] 
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some differnces are seen, the DN ratio is basically in a similar value for different bands and materials. 

The differences in the HS and MS data used in this study can be explained by Figure 9. The 

systematic difference between them is the effects of atmospher; the MS data corresponds to the 

Top-of-Atmosphere (TOA) radiance while the HS data to the Middle-of-Atmosphere (MOA) radiance. 

Other differences, such as the acquisition date and time, and resulting sunlight and air conditions, 

viewing geometry, and image resolution, also exist. In spite of these differences, the averaged HS data 

here are still almost comparable with the MS data. 

After observing spectral characteristics of various surface materials of the HS image, training data 

for preliminary supervised classification were selected as shown in Figure 10 (a). Due to the very high 

dimensionality of the HS data, the standard maximum likelihood classifier (MLC) was difficult to 

apply. A principal component analysis (PCA) reduces such a high-dimensional problem to a much 

lower-dimensional one owing to the similarity of neighboring HS bands. 

In this study, however, a simple Nearest Neighbor (NN) classification was carried out using all 

the 144 HS bands as a first attempt. The results of the NN classification for the HS and MS images are 

compared in Figure 10. Due to the limited number of training classes, the results look similar although 

some differences can be seen in roofs. We will try more sophisticated classification methods in the 

near future and reveal the effectiveness of HS data in urban land cover classification.  

 

CONCLUSIONS 

Using airborne hyperspectral (HS) data acquired by CASI-1500 imager over Houston, Texas, 

USA, the spectral reflectance characteristics of surface materials were investigated. The HS data 

include 144 spectral bands in the visible to near-infrared (380 nm to 1050 nm) regions. A multispectral 

(MS) image acquired by WorldView-2 satellite was also introduced in order to compare it with the HS 

image. A field measurement was also carried out using a handheld spectroradiometer by the authors. 

The irradiances of surface materials obtained by the measurement were also compared with the digital 

 

 (a) Training data 

  

           (b) Hyperspectral (HS) image             (c) Multispectral (MS) image 

Figure 10. Supervised classification for the HS and MS images. (a) Training data used for 

classification, (b) the result for the HS image, and (c) the result for the MS image. 
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numbers of the HS data and they showed a reasonable level of agreement. Finally supervised 

classification was conducted for the HS and MS data and their results were discussed. Although our 

study is still preliminary, the results of more detailed investigation will be presented in the near future. 

 

ACKNOWLEDGMENT 

The hyperspectral data used in this study were provided from the 2013 IEEE Geoscience and 

Remote Sensing Society Data Fusion Contest. 

 

REFERENCES 
[1] Rathje, E., and Adams, B.J., 2008, The role of remote sensing in earthquake science and 

engineering, opportunities and challenges, Earthquake Spectra, 24(2), 471–492. 

[2] Eguchi, R.T., Huyck, C., Ghosh, S., Adams, B.J., 2008, The application of remote sensing 

technologies for disaster management, The 14th World Conference on Earthquake Engineering, 

CD-ROM, 17p. 

[3] Brunner, D., Lemoine, G., and Bruzzone, L., 2010, Earthquake damage assessment of buildings 

using VHR optical and SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 

48(5), 2403-2420. 

[4] Meslem, A., Yamazaki, F., Maruyama, Y., 2011, Accurate evaluation of building damage in the 

2003 Boumerdes, Algeria earthquake from QuickBird satellite images, Journal of Earthquake 

and Tsunami, 5(1), 1-18. 

[5] Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N.M., Chanussot, J., 

2013, Hyperspectral remote sensing data analysis and future challenges, IEEE Geoscience and 

Remote Sensing Magazine, 1(2), 6-36. 

[6] MicroImages, Inc., 2012, Introduction to hyperspecral imaging, Available online: 

http://www.microimages.com/documentation/Tutorials/hyprspec.pdf (accessed on 14th 

September 2013). 

[7] Pompilio, L., Villa, P., Boschetti, M., Pepe, M., 2013, Spectroradiometric field surveys in remote 

sensing practice: a workflow proposal, from planning to analysis, IEEE Geoscience and Remote 

Sensing Magazine, 1(2), 37-51. 

[8] 2013 IEEE GRSS Data Fusion Contest, 2013, Fusion of Hyperspectral and LiDAR Data, 

Available online: http://www.grss-ieee.org/community/technical-committees/data-fusion/ 

data-fusion-contest/ (accessed on 14th September 2013). 

[9] ITRES Research Limited, 2011, CASI-1500 Hyperspectral Imager, Available online: 

http://www.itres.com/products/imagers/casi1500/ (accessed on 14th September 2013). 

[10] ITRES Research Limited, 2006, Operations and Mission Planning for ITRES’ CASI 1500h 

system, Available online:  

ftp://snr-0563.unl.edu/Incoming/For_Rick/CASItraining/CASI_1500h_System_Op_Training.ppt 

(accessed on 14th September 2013). 

[11] DigitalGlobe, Inc., 2010, Radiometric Use of WorldView-2 Imagery: Technical Note, Available 

online:http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_I

magery%20(1).pdf (accessed on 14th September 2013). 

[12] EKO Instruments Co., 2013, MS-720 Spectroradiometer,  Available online: 

http://eko-eu.com/products/solar-radiation-and-photonic-sensors/spectroradiometers/ms-

720-spectroradiometer (accessed on 14th September 2013). 

[13] Yamazaki, F., Matsuoka, M., Warnitchai, P., Polngam, S., Ghosh, S., 2005, Tsunami 

Reconnaissance Survey in Thailand Using Satellite Images and GPS, Asian Journal of 

Geoinformatics, 5(2), 53-61. 

[14] Liu, W., Yamazaki, F., 2012, Object-based shadow extraction and correction of high-resolution 

optical satellite images, IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, DOI: 10.1109/JSTARS.2012.2189558, 5(4). 1296-1302. 

Proceedings of ACRS 2013

SC02 - 476

http://www.microimages.com/documentation/Tutorials/hyprspec.pdf
http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/
http://www.itres.com/products/imagers/casi1500/
ftp://snr-0563.unl.edu/Incoming/For_Rick/CASItraining/CASI_1500h_System_Op_Training.ppt
http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery%20(1).pdf
http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery%20(1).pdf
http://eko-eu.com/products/solar-radiation-and-photonic-sensors/spectroradiometers/ms-720-spectroradiometer
http://eko-eu.com/products/solar-radiation-and-photonic-sensors/spectroradiometers/ms-720-spectroradiometer



