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ABSTRACT 

This paper presents a newly developed multi-level detection methodology using high-resolution optical satellite images. 
It aims to balance the quick response requirement and the details of detected results and hence, to satisfy various user 
demands. Damage extent is firstly detected from only post-disaster image on the first level, texture-based processing. 
This level quickly maps the damage extent and damage distribution but not in details. In some focused areas, the second 
level with object-based processing will derive further details of the damage using both pre- and post- data. The 
methodology is demonstrated on QuickBird images acquired over the damage areas of Bam, Iran, which was extensively 
devastated by the December 2003 earthquake. The detected results show a good agreement with the ones by visual 
detection and field survey.   
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1. INTRODUCTION 
Time is a critical factor in post-disaster response. Making use of remotely sensed data is a good solution to reduce the 
time of gathering information. This kind of data is especially useful for the hard-hit and difficult-to-access areas. Recent 
catastrophes have been observed and captured by various remote sensors on different space-borne or airborne platforms. 
It triggers a great employment of remote sensing techniques in post-disaster response. Focusing on the employment of 
remote sensing in earthquake damage detection, many researches and implementations have been carried out after 
several recent earthquakes such as the 1995 Kobe, Japan earthquake1, the 1999 Kocaeli, Turkey earthquake2,3, the 2001 
Gujarat, India earthquake4,5, the 2003 Bam, Iran earthquake6,7, the 2006 Central Java earthquake8,9. Either optical or 
radar, images at different resolutions have been used. The availability of higher resolution images such as QuickBird and 
Ikonos these days allows the interpretation of damage scale of each building block or even each individual building 
rather than overall damage distribution and damage extent. However, those high-resolution satellite images introduce 
higher internal variability and noise within land-use classes. They cause more difficulties in handling the data. Both 
visual and automated interpretations are used to derive the damage information from remotely sensed images. Reducing 
the processing time is also in serious concern. 

At the lowest level of processing, image processing deals with pixels. Each pixel possesses the gray value that represents 
the spectral reflectance at its location. Based on that, a vast amount of pixel-based algorithms were developed. Texture-
based algorithms are higher level of processing, which analyze different kinds of relationship among the neighbors of 
each pixel. These two types of processing have been successfully used for coarse resolution images like Landsat and 
ERS1,2,3. The reason is that coarse images do not provide detailed information. A pixel itself might be a mixture of 
different objects. Therefore, pixel or texture information is the reasonable cue for the detection and extraction of damage 
extent and distribution. Those pixel-based and texture-based methods developed could be used with airborne-based 
images4 and high-resolution satellite images6. However, it was unable to exploit all possessed information in a high-
resolution image. The visual interpretation, which obviously is time-consuming and requires experienced interpreters, 
has been a more reliable method7. To derive more detailed information, which is contained in an airborne-based image or 
a high-resolution satellite image such as QuickBird and Ikonos, requires much more complicated processing.  
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To fully exploit detailed information on high-resolution satellite images and also to be adopted for quickly response after 
a catastrophe, we develop a multi-level damage detection method. On the first level, a simpler texture-based detection6 is 
employed over a large extent to quickly detect damage extent and distribution. Observing the behavior of edge texture, 
this level successfully point out the “hot spot” of damage and totally collapsed buildings. Based on a “hot spot” of 
concern, its patch is generated and passed to an object-based detection for more detailed information on the second level. 
Two QuickBird images acquired over Bam city, Iran before and after the earthquake on December 26, 2003 are used for 
demonstration. Section 2 of this paper will briefly describe the texture-based detection. A newly developed object-based 
damage detection method is introduced in Section 3. It is followed by the discussion on the detected results and further 
development (Sections 4 and 5). 

 

2. TEXTURE-BASED PROCESSING 
On this first level, we employed the texture-based algorithm developed for processing aerial photograph4. It was also 
further developed for applying on high-resolution satellite images6. More details of the algorithm are referred to these 
publications of our previous works. Briefly, the edge intensity (Ei) is derived from a 7x7 Prewitt filter on the intensity 
(brightness) image. Ei is obtained from the maximum value in the templates for eight directions on the edges. An edge 
direction is defined as the direction of Ei, such as 0 - 180, 45 - 225, 90 - 270, and 135 - 315 degrees. Using the Ei value, 
Ev is calculated as a variance in a 7 x 7 pixel window. The ratio of the predominant direction of the edge elements in a 7 
x 7 pixel window, Ed, is also calculated. Subsequently, the co-occurrence textures, the angular second moment (Ta) and 
entropy (Te), are calculated in a 7 x 7 pixel local area. 

Both textures represent the uniformity of the edge structure but have opposite trends. Collapsed buildings should show 
the strongest trends of non-uniformity, i.e. lowest range of Ta and highest range of Te. Table 1 shows the threshold 
values for the above-mentioned parameters. Finally, the local density in 31 x 31 pixel window of the detected pixels are 
assessed to remove the meaningless spots. 

Table 1. Threshold values for indices. 

 

 

 
 
 
 
 
 
 

Several pre-processing steps are required prior to applying the above algorithm on high-resolution satellite images. First, 
pan-sharpening is carried out to exploit the multi-spectral information at the better resolution of panchromatic band. 
Here, we employed our improved pan-sharpening algorithm, which is based on color-normalized method and includes a 
histogram stretching to match the pan-sharpen channels with original multi-spectral channels. Second, the histograms of 
these pan-sharpened bands are modified to match that of a natural color photo. This step is to simulate a satellite image 
look as an aerial photograph. It is very important because we utilize the threshold values successfully used for the aerial 
photograph. Then, the intensity image is generated and the abovementioned texture-based algorithm can be employed. 
Vegetation might be removed in advance by thresholding the Normalized Difference Vegetation Index (NDVI). This 
helps to improve the detection accuracy due to the similarity of vegetation textures and collapsed area textures. 

Post-disaster QuickBird image acquired on January 03, 2004 over the hard-hit areas of Bam city, Iran is shown in Fig.1. 
The result of texture-based detection is represented as black spots overlain on this true-color-composite QuickBird image 
(Fig. 2). Visual inspection showed that most of areas of damage buildings were successfully detected. 

 

Index Threshold values 

Ev: edge variance 2.0 - 6.8  (× 105) 

Ed: edge direction 0.3 - 0.6 

Ta: angular second moment 0.75 - 6.6 (× 10-2) 

Te: entropy 3.5 - 4.2 
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Fig. 1. True-color-composite QuickBird image of Bam, Iran acquired on January 03, 2004. 

 

 
Fig. 2. Texture-based detected results shown as black spots on QuickBird image. 

 

3. OBJECT-BASED PROCESSING 
A small area in this hard-hit area of Bam was chosen for demonstrating the object-based processing. Texture-based 
processing detected that 37.9% of the area was damaged. Since buildings dominated in the area, it can be said 
approximately that 37.9% buildings were damaged. In object-based processing, both pre-disaster and post-disaster 
information are required. Perhaps, existing GIS database can provide the pre-disaster information. However, it was not 
the case of Bam, Iran. Thus, we purchased the QuickBird image acquired on September 30, 2003. Selected areas from 
these pre- and post- images are shown in Fig. 3. 

 
Fig.3. The pre- (a), post- (b) QuickBird images of the study area, and (c) texture-based detected result in bright color. 
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Our object-based processing was developed based on an area morphology10 multi-scale framework. Early development 
and preliminary results were recently published11,12. How to generate a scale-space based on area morphology was 
presented in those publications. This paper discusses more on the classification and extraction across the scale-space. 
After generating the scale-space, the step-by-step processing is as follows. 

First, on each scale, spectral information is categorized into different classes by K-mean clustering. Separately clustered 
on each scale, the spectral indices across the scale-space of the same class might be different. To be further used in 
extraction, the same class should be re-assigned to the same index.  

The correlation analysis, which measures the similarity between the distribution histograms of each class on the original 
image, is employed to find out the best match with the finest scale as the reference. Let Hi,0 is the histogram of class i on 
the finest scale and Hj,k is the histogram of a class j on the scale k. Their correlation is computed as follow. 
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where cov is the covariance of these histograms and std is the standard deviation of each histogram. The correlation 
values of histogram of class j on the scale k with every class on the finest scale are computed. The maximum value 
shows the best match and this class index on the finest scale replaces class j on the scale k. 

Next, the objects are assigned their ID on each scale and can be linked across the scale-space through the same spectral 
index. Prior to the extraction of an object, it is recommended to eliminate the possible duplicate existence on two 
consecutive scales. Due to the complex scene of an urban area, this situation often occurs. Three criteria are taken into 
account. First, an object on the finer scale (object A) overlapping an object on the next coarser scale (object B) is 
investigated. Second, if the center of object A is not so far the one of object B (a distance of 3 pixels, for example), their 
areas are computed and compared. If object A’s area is approximate object B’s area (80% difference), the object A is 
removed as it is the duplicate of object B. A range of spectral indices and a range of scales relevant to building features 
are chosen for an extraction across the scale-space from the finest to the coarsest scales. Fig. 4 shows the extracted 
building features from the pre- and post- images. The building features are shown in different colors according to their 
ID numbers. 

 
Fig. 4. Object-based extracted building features from the pre- (a) and post- (b) images. 

 

Finally, extracted building features from the pre- and post- images are compared to map the damaged buildings. A 
building is defined as damaged one if its area reduced more than an area threshold. The possibility to successfully locate 
the partly collapsed buildings highly depends on the selection of this threshold. Damaged buildings were detected from 
Bam images are shown in Fig. 5. The result found that 116 of 151 buildings were damaged. 
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4. DISCUSSION 
Exploiting more information contained in an image, object-based processing obviously takes longer computational time 
than texture-based processing. Complex processing might produce the required details but also produce a messy scene of 
extracted building features. It depends on the characteristics of the focused area and the satellite images. For instances, 
the uniform spectral reflectance of building features in Bam city caused the difficulties in exactly extracting the building 
boundaries. As a result, it was very difficult to compare building-by-building between the pre- and post- images. Thus, it 
was unable to exactly count the number of damaged buildings and verify the damage grades. 

The texture-based detected result is represented as semi-transparent polygons overlain on the object-based detected 
results (Fig. 5) to crosscheck the results between two levels. This texture-based result is also overlain on the pre- and 
post- images for references in this figure. Fig. 5 shows that level 1 result covered most of totally collapsed areas. Level 2, 
on the other hand, detected both totally and partly collapsed buildings since it concerned objects not pixels. The 
comparison here also concluded that the texture-based results should be represented at a less detailed scale. 

 
Fig. 5. The texture-based detected result overlain on the pre- (a), post- (b) images, and the object-based damage detected 

result (c). 

 

We investigated further the object-based detected results with the one by visual damage detection7. The visual inspection 
classified damaged buildings according to European Macroseismic Scale (EMS), i.e. 5 grades of damage. Object-based 
detection produced a good agreement with Grade 4 and 5 damaged buildings (Fig. 6). Some other grade 3 and 4 points 
located in non-damage areas detected by object-based method. However, parts of these buildings were detected as shown 
in red circle in Fig. 6. Fig. 6 also presents the difficulties in detection of exact boundaries of the buildings even by visual 
interpretation. 

 
Fig. 6. Compare the visual interpretation results (color dots) and the pre- (a), post- (b) images and (c) object-based detected 

results. 

5. CONCLUSION 
Multi-level damage detection was proposed to flexibly satisfy diverse user demands in post-disaster response. Level 1 
can quickly produce the damage distribution to help the public figure out the extent of damage. Level 2 assists the 
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investigation in more details to determine the level and quantity of damage in some small areas of specific concern. 
Multi-level mechanism also helps to reduce the cost including data acquisition cost and computational cost. It is 
recommended that the developed multi-level damage detection methodology should be further tested in various areas. A 
multi-level damage detection system should be developed for widely and easy-to-use in the future. 
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