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ABSTRACT : Japan Highway Public Corporation (JH) has developed the new seismometer networks along
the expressways since the 1995 Kobe earthquake. Using earthquake information from these instruments, JH
closes the expressways if the peak ground acceleration (PGA) is larger than or equal to 80 cm/s2 is recorded or
reduces the maximum speed limit if the PGA is larger than or equal to 50 cm/s2 is observed. However, recent
studies have revealed that highway structures will not be seriously damaged under such level of seismic motion.
Moreover, the highway structures are being retrofitted now. Therefore, we may think of relaxing the regulation
of expressway closure. In order to do so, we must examine the effects of seismic motions to the automobile
drivers on expressways since they may encounter difficulties in keeping the safety driving and traffic accidents
may occur. In this study, the model of a vehicle with six degrees of freedom was made and its responses under
several seismic motions were calculated. Then, in order to conduct a series of virtual tests of driving on a
highway during earthquakes, the response of a vehicle under seismic motion was applied to the driving
simulator. This driving simulator has six servomotor-powered electric actuators and they control its motions. We
carried out several types of tests for examinees. In the near future, intelligent transportation system (ITS) will be
realized. In that case, we must stop vehicles automatically if a large earthquake occurs. This research is also
helpful for such systems.

KEYWORDS : driving simulator, expressway, seismic motion, drivers’ response, intelligent transportation
system (ITS)

1. INTRODUCTION

In Japan, after the 1995 Kobe earthquake, higher priority has been given for the countermeasures
against earthquakes than before. Thousands of strong motion seismometers were installed and a
number of damage assessment systems were also developed by different organizations [1]. Under this
situation, Japan Highway Public Corporation (JH) has developed the new seismometer network along
the expressways. Using earthquake information from these instruments, JH closes the expressways if
the peak ground acceleration (PGA) larger than or equal to 80 cm/s2 is recorded [2]. However recent
studies on earthquake damage have revealed that expressway structures are not seriously damaged
under such level of ground excitation. Though JH closes the expressways under this ground excitation
level, the serious damages that cause the problems in keeping on driving on the expressways are
seldom found in the recent years. Hence, we may think of relaxing the regulation of expressway
closure.

In this objective, we need to examine the effects of seismic motion to the automobile drivers on
expressways since they may encounter difficulties in keeping safety driving and traffic accident may
occur. In general, under a large seismic motion, we feel some difficulties to keep remain in doing
something that are easily done in the daily life, for instance, operating the computers in nuclear power
plants. Shibata et al. [3] tested the accuracy of typing under the strong motion using a computer set on
a two-dimensional shaking table. In nuclear plants, computers manage the system and if a large
earthquake occurs, operators have to stop the system immediately. They may feel some difficulties in
operating the keyboard of the system under intense shaking.
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Yamanouchi and Yamazaki [4] investigated drivers’ response to strong seismic motion using a driving
game machine set on a shaking table. However, the driving game machine used in this experiment had
lack of reality as it was made for the amusement purpose. Recently, the driving simulators are installed
in several organizations that are concerned with vehicle dynamics [5]. In 1999, the driving simulator
with six servomotor-powered electric actuators was introduced to the Institute of Industrial Science,
the University of Tokyo. Using this driving simulator, we can conduct a series of virtual tests to clarify
drivers’ responses and their feelings while controlling the simulator under seismic motion with good
reality.

In this study, a vehicle model with six degrees-of-freedom was considered, and its responses under
seismic motions were obtained. Based on the results, the effects of seismic motion to the dynamic
response of a vehicle were analyzed. In order to investigate the drivers’ responses and their feelings, a
series of virtual tests using the driving simulator were also conducted.

2. SEISMIC RESPONSE ANALYSIS OF A RUNNING VEHICLE

Figure 1 shows the fundamental motions of a vehicle. We define three axes set on the center of gravity
of a vehicle. The x-axis is the longitudinal direction, the y-axis is the transverse direction, and the z-
axis is the vertical direction of the vehicle. The model has three translation motions (longitudinal,
transverse, and vertical) and three rotational motions (rolling, pitching, and yawing). The equations of
motion of a vehicle to the longitudinal and transverse direction are described as follows:
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where u and v are the velocities in the x and y directions, respectively and r is the angular velocity of
yawing. δ  is the angle difference between the x-direction and the direction of each tire. Fx and Fy are
the longitudinal and transverse forces of each tire, respectively. The index i represents the front or rear
wheel and the index j represents the left or right wheel. The yawing motion can be described as
follows:
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where lf is the distance between the center of gravity and the front wheel, lr is the distance to the rear
wheel and d is the distance between the right and left wheels. Rolling and pitching angles are
described by Eq. (3) and (4), respectively.
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Figure 2. Quarter vehicle model
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Figure 1. Fundamental motions of a vehicle
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Figure 3. Response characteristics of a vehicle
to vertical motion
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where φ  is the roll angle and θ  is the pitch angle. φK  is the rolling stiffness, K is the suspension
stiffness and h is the height of the center of the gravity. As shown in Eq. (5), yaw angle can be
obtained by integrating yaw angular velocity, r.

dtr∫=ψ (5)

For the vertical motion, a quarter vehicle
model (Fig. 2) is employed in this study. The
upper mass represents the body of a vehicle
and the lower mass represents a tire. The upper
spring is the suspension of a vehicle and the
lower spring represents the stiffness of the tire.
According to this model, the equation of
motion to the vertical direction is described as
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where zin is the vertical displacement of the ground. 1ζ ( inzz −= 1 ) and 2ζ  ( inzz −= 2 ) are the relative
vertical displacement of m1 and m2, respectively. By solving Eq. (7), the transfer function between zin

and z2 can be derived (Fig. 3). The predominant frequency is observed around 1.2 Hz.

In order to calculate the force acting on each tire, the Magic Formula Model [6] was employed in this
study. The lateral force, Fy, is described as the function of the slip angle. The longitudinal force, Fx, is
described as the function of the slip ratio. In the calculation, the slip ratio is set to be zero because it is
assumed that a vehicle is running without accelerating or deaccelerating.

In order to conduct the seismic response analysis, Eq. (1) is modified as
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where x&&  and y&&  are the ground accelerations of longitudinal and transverse directions to the vehicle.

For the vertical component, the ground acceleration due to the earthquake was substituted as inz&&  in
Eq. (6).

The seismic response analysis was performed using five sets of actual earthquake records. The
acceleration records at the Kobe Marine Observatory of Japan Meteorological Agency (JMA) in the
1995 Kobe Earthquake, at the El Centro station in the 1940 Imperial Valley Earthquake, at the K-NET
Kofu station in the 2000 Tottori-ken Seibu Earthquake, at SCT station in the 1985 Mexico Earthquake
and at Chiba Experiment Station of Institute of Industrial Science, the University of Tokyo in the 1987
Chiba-ken Toho-Oki Earthquake were selected as typical examples of strong motion records.
Considering the sensitivity of the model [7], the filtered motions with the range of 0.2-10 Hz were
employed as input motions. Figure 4 shows the acceleration response spectra with 5 % damping for



the records (transverse component to the vehicle) scaled to PGA equal to 300 cm/s2. The acceleration
response spectrum of the SCT, Mexico record has much larger value in the frequency range smaller
than 1 Hz compared with those of the other records.
In order to apply the seismic motion to the vehicle model, the recorded seismic motions were scaled
with respect to the peak ground acceleration (PGA). The three-component record was applied to the
vehicle model in each case by scaling the records with respect to the PGA of the transverse
component. The running speed of a vehicle was set to be 100 km/h. Figure 5 shows the relationship
between the PGA and the maximum lateral velocity of the vehicle for the five sets of acceleration time
histories. The initial running speed of a vehicle was set 100 km/h. According to the figure, these

relationships are almost linear. The variation of the maximum lateral velocity is seen from event to
event even the same PGA value is applied. The Mexico record was associated by larger lateral velocity
responses compared with those by the other records. Figure 6 shows the relationship between the peak
ground velocity (PGV) and the maximum lateral velocity for the five sets of acceleration time histories
and the relationship between JMA intensity and the maximum lateral velocity. According to the figure,
when the maximum values of lateral velocity are plotted as a function of PGV, the variation is not so
large from event to event except for the response under the Mexico record. As shown in Fig. 4, the
acceleration response spectrum of Mexico record is completely different from those of other four
records. However, when they are plotted as a function of JMA intensity, the results for the different
input motions were very close including that for the Mexico record. The JMA seismic intensity is
calculated through a frequency filtering of a three-component record. This process may have some
similarity with the vehicle response model used in this study.

3. A SERIES OF VIRTUAL TESTS USING DRIVING SIMULATOR

Based on all the results of the seismic response analysis, the JMA intensity may be the most suitable
index to express the severity of seismic motion from the viewpoint of vehicle response. However, in
the calculations, the reaction of the driver is not considered. Hence, in order to investigate the effect of
seismic motion in keeping safety driving, a series of virtual tests using the driving simulator (Fig. 7)
were carried out. A scenario highway course is equipped on the simulator for the virtual driving and
the front view from the driver’s seat is realized by three large screens with LCD projectors. This
simulator has six servomotor-powered electric actuators to simulate the motion of a vehicle.
Originally, they can only simulate the accelerations of a vehicle. Before conducting virtual tests, the
sinusoidal waves with a certain frequency were applied to the actuators and the amplitude ratios
between the motions produced by the actuators and those applied to the actuators were calculated (Fig.
8). The amplitude ratio is almost equal to 1.0 in the low frequency range and it becomes small in the
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Figure 5. Relationship between the
maximum lateral velocity of the vehicle  and
the peak ground acceleration applied to the
transverse direction to the vehicle
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high frequency range.
In order to conduct a series of virtual tests of driving on a highway during earthquakes, the response of
a vehicle under seismic motion was applied to the actuators of the driving simulator. The longitudinal
and transverse displacements applied to the actuators are shown in Eq. (8).
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Figure 6. Relationship between the maximum lateral velocity of the vehicle and the peak
ground velocity applied to the transverse direction to the vehicle  (left) and the relationship
between the maximum lateral velocity of the vehicle  and JMA intensity (right)

Figure 7. Driving simulator introduced to the Institute of Industrial Science, the University of
Tokyo
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Figure 8. Amplitude ratio between the motion produced by the actuators and the motion
applied to the actuators



( )

∫
∫

=

−=

vdtD

dtvuD

TR

LT 0
(8a,b)

where v0 is the initial running speed of the vehicle. The vertical motion applied to the actuators is

2ζ shown in Eq. (6). Roll, pitch and yaw angles are also applied to the actuators. All parameters that
are used in the driving simulator are set to be the same as those used in the calculation of the dynamic
vehicle response. The results of the simulator experiments will be presented in separate papers in the
near future.

4. CONCLUSIONS

In order to investigate the response of an automobile under seismic motion, a running vehicle model
with six degrees-of-freedom was developed. The seismic response analysis was conducted using five
sets of actual earthquake records. The vehicle responses for the different input motions were plotted as
a function of peak ground acceleration (PGA). The response of a vehicle model became larger for the
Mexico record, since it has larger response spectrum amplitudes in the long period range compared
with the other records though all records were scaled to have the same PGA value. When the
relationship between the peak ground velocity (PGV) and the maximum lateral velocity was
considered, the relationship was distributed in a narrow range except for that of the Mexico record.
Similar relationships of the vehicle responses were also plotted for the JMA seismic intensity, and the
results for the different input motions were very close including that for the Mexico record.

A series of virtual tests driving on an expressway during an earthquake using the driving simulator
were conducted. In the near future, intelligent transportation system (ITS) will be realized. In that
case, we must stop vehicles automatically if a large earthquake occurs. We intend to apply the result of
this research to such systems.
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