航空機 Pi-SAR-X2 画像による 2016 年熊本地震の建物後方散乱特性に関する基礎的検討

ダンディンシャン1・劉 ウェン2・山崎 文雄3

1 会員　千葉大学 工学部 学生 (〒263-8522 千葉市稲毛区弥生町 1-33) 　E-mail:afsa5480@chiba-u.jp
2 正会員　千葉大学大学院 工学研究院 助教 (〒263-8522 千葉市稲毛区弥生町 1-33) 　E-mail:wen.liu@chiba-u.jp
3 正会員　千葉大学大学院 工学研究院 教授 (〒263-8522 千葉市稲毛区弥生町 1-33) 　E-mail:fungio.yamazaki@faculty.chiba-u.jp

2016 年 4 月 16 日に熊本県熊本地方で Mw7.3 の地震が発生した。 とくに、熊本県益城町において建物の倒壊をはじめとする、多くの被害が生じた。熊本地震の発生直後、情報通信研究機構（NICT）は X バンドレーダ搭載の航空機 Pi-SAR-X2 を用いて被災地域を観測した。本研究では益城町を対象地域として、2016 年熊本地震の直後に撮影された分解能 0.3m の多偏波 Pi-SAR-X2 画像を使用して、平屋根形式の建物に対してマイクロ波の反射モデルを作成した。SAR の斜め照射特性からなる画像上の倒れ込みやレーダ影といった基本的な特徴を検討し、HH 偏波画像における後方散乱係數の平均値を算出し、個別建物の被害状況の把握を試みる。

Key Words: Pi-SAR-X2, flat-roof building model, layover, Radar shadow, SAR backscattering

1. はじめに

近年、国内外で地震や風水害などの自然災害が多発し、露見する人口や構造物の増加に伴って、災害リスクが増加している。そのため、自然災害による損失を軽減するために、被害状況を早期把握し適切な緊急対応を取る必要がある。しかし、災害発生時には交通網が寸断して早期に現地に立ち入ることが困難な場合が多い。このような状況の解決策として、リモートセンシング技術の活用が考えられる。本研究で扱う合成開口レーダ（Synthetic Aperture Radar: SAR）は、衛星や航空機からマイクロ波を照射し、天候に左右されず全天を観測することができる。航空機搭載合成開口レーダ（Pi-SAR）は、30cm 以上の高分解能の多偏波 SAR 画像を取得することができ、災害発生時には緊急観測ができる点、被害把握手段として適していると考えられる。

SAR 画像を用いた自然災害の被災地域に関する観測と研究は、2011 年東北地方太平洋沖地震 および 2015 年ネパール地震 例など、これまで多数行われてきている。地震などによって建物に被害が発生した場合、SAR 画像上でも被害状況に変化が生じると考えられる。そこで、松岡・山崎 は、建物被害地域の検出方法として後方散乱強度の差分値と相関値を複数時間の衛星 SAR 画像に適用し、検出精度を明らかにした。井上ら は、2 時期の X バンド高解像度衛星 SAR 画像を用い、災害前後の橋梁周辺の後方散乱係數の差分と相関係数により、橋梁被害の把握を行った。しかしながら、航空機 SAR においては、同一撮影条件の災害前後画像の取得は一般に困難である。そこで、1 時期の高解像度 SAR 画像から構造物の被害状況を把握することは重要といえる。

本研究では、2016 年熊本地震後の 1 時期の航空機 SAR 画像から建物被害抽出を最終目的として、建物の倒れ込みやレーダ影の特徴を利用した建物の後方散乱特性に関する基礎的検討を行った。

図 1 熊本地震の起震断層帯と本研究の対象地域
2. 対象地域と使用データ

2016年4月14日21時26分、熊本県熊本地方の深さ11kmを震源とするMw6.5の地震（前震）が発生した。この地震を引き起こしたのは、震源付近を通る日奈久断層であると考えられている。この約28時間後の4月16日01時25分に布田川断層でMw7.3の地震（本震）が発生した。これらの地震により、熊本県益城町において震度7を2度観測した。図1には、これらの起震断層帯と本研究の対象地域（熊本県益城町）を示す。

本研究では、情報通信研究機構（NICT）がXバンドレーダ搭載の航空機Pi-SAR-X2を用いて被災地域を2016年4月17日に撮影した分解能30cmの4偏波Pi-SAR-X2画像を使用した。図2は多偏波SAR画像によるカラーコンポジット図であり、比較するために益城町における航空写真（アジア航測（株）撮影）の図3に示す。SARの入射角は37.6度、アジアマス（飛行）方程式は93.0度となっている。また、原画像のデジタル値(DN)は、式(1)を用いてから単位面積あたりの後方散乱係数(σ)に変換し、画像解析に使用した。

$$\sigma^0 = 10 \cdot \log_{10}(\text{DN})^2 + 5.7 \quad (1)$$

3. SAR画像上の建物の反射モデル

SARアンテナは、衛星や航空機の飛行（アジアマス）方向と直交するレンジ方向へ同心円上にマイクロ波を照射し、その反射波を観測する。観測されたデータは、アンテナと地表を結ぶスランプレンジ上に記録されるが、この観測原理に伴い、倒れこみやレーダ影などのSAR画像特有の幾何学的歪みが生じる。倒れこみやレーダ影の後方散乱特性は、被害抽出に有効と考えられる。

この幾何学的歪みをよく理解するために、Brunnerらが提案した単屋根モデルの散乱形式に基づいて、今回はRC造の単屋根形式の建物を選定し、倒れこみとレーダ影が、実際にSAR画像上にどのように表示されるかを検討する。

建物の後方散乱は、建物の屋根形式だけでなく建物の軸方向とマイクロ波の照射方向の角度によって大きく変わることが知られている。そこで、建物の選定にあたってはレンジ方向を基準に建物軸方向まで時計回りを正に取った角度（照射角ϕ）を考慮する。図4にレンジ方向と建物軸の照射角ϕの関係を示す。選定した建物の航空写真を図5に、航空レーザー計測（2016年4月23日、アジア航測撮影）によるDSM（数値地図モデル）を図6に、建物の諸元を表1に示す。
（1）平屋根（Flat-roof）建物の後方散乱形式

平屋根建物のモデルでは、幅 W で高さ H の直方体建物を仮定している。SAR センサが入射角 θ_1 で観測した際、地面からの反射散乱を a、道路と建物壁などの直角構造で引き起こされる二回反射散乱を b、前面壁からの反射散乱を c、屋根からの反射散乱を d とする後方散乱が、図 7 に示すように発生と考えられる。この場合、地表面に投影された建物の倒れこみ長 L とレーザ長 S は、式(2),(3)で求められる。

$$L = H \cot \theta_1$$

$$S = H \tan \theta_1$$

Brunner らは、平屋根建物形式のモデルに対して、建物形状と入射角による条件を 3 つに分けて、それぞれの後方散乱モデルを提案した。本研究では $H > W \tan \theta_1$ と $H < W \tan \theta_1$ という典型的なケースに着目して、SAR 画像上に平屋根建物の後方散乱モデルを作成した。

図 7 に示す $H > W \tan \theta_1$ の場合では、屋根からの反射散乱 d は二回反射散乱 b よりも先に発生するため、倒れこみ区域は建物の輪郭内に到達しない。図 8 に示すこのケースの平屋根建物の SAR 画像では、明るく光っている部分（倒れこみ区域）が建物輪郭内に入っていることが確認できる。
図9は、二乗積の積分を用いて推定した光の拡散係数の関数を示しています。図10は、倒れ込み部の建物の仮想的なスケッチを示しています。図11は、実際の倒れ込み部の建物のスケッチを示しています。

4. まとめ

本研究では、主要な1年間のSAR画像から建物被害を把握するために、平屋建形式の建物について後方散乱モデルの作成を行い、倒れ込みやレーダ影における後方散乱係数の平均値を検討した。今後の課題として、日本の木造住宅屋根の倒れ込み建物形式の建物に対して、後方散乱モデルを作成し、倒れ込みやレーダ影の特性を検討する必要がある。

謝辞：PI-SAR-X2画像は、情報通信研究機構と千葉大学との共同研究の一環として情報通信研究機構から提供を受けた。ここに記して感謝を表する。

参考文献
3) 松岡昌見, 山崎進夫: 人工衛星SAR強度画像による建物被害地域の検出手法, 日本建築学会構造系論文集, No. 551, pp. 53-60, 2002.
5) 情報通信研究機構: 機関研究機関SAR観測システム, https://pi-sar.nict.go.jp/