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Abstract

The trend of isolating highway bridges is on the rise after the recent large earthquakes in Japan, the United States, and other countries.

Recent investigation shows that isolated systems perform well against seismic forces as the substructures of such systems experience less

lateral forces due to energy dissipation of the isolation device. Hence, it is anticipated that there might be an effect on fragility curves of

highway bridges due to isolation. In this study, 30 isolated bridge models were considered (and they were designed according to the

seismic design code of highway bridges in Japan) to have a wider range of the variation of structural parameters, e.g. pier heights,

weights, and over-strength ratio of structures. Then, fragility curves were developed by following a simplified procedure using 250 strong

motion records, which were selected from 5 earthquake events that occurred in Japan, the USA, and Taiwan. It is observed that the level

of damage probability for the isolated system is less than that of the non-isolated one for a lower level of pier height. However, having the

same over-strength ratio of the structures, the level of damage probability for the isolated system is found to be higher for a higher level

of pier height compared to the one of the non-isolated system. The proposed simple approach may conveniently be used in constructing

fragility curves for a class of isolated bridge structures in Japan that have similar characteristics.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fragility curves are regarded to be useful tools for
estimating the extent of probable damages (slight, moder-
ate, extensive, and complete) of structures due to an
earthquake [1–4]. It shows the probability of structure
damages as a function of ground motion indices, e.g. peak
ground acceleration (PGA) and peak ground velocity
(PGV). They allow estimating a damage level for a known
ground motion index.

Yamazaki et al. [1] developed a set of empirical fragility
curves for highway bridges based on actual damage data
from the 1995 Kobe earthquake. However, the type of
structure, structural performance (static and dynamic) and
variation of input ground motions were not considered in
e front matter r 2006 Elsevier Ltd. All rights reserved.
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the empirical approach. It is assumed that structural
parameters and input motion characteristics (e.g. frequency
contents, phase, and duration) have influence on the
damage of structures for which there will be an effect on
fragility curves.
The present authors [5] developed a set of analytical

fragility curves for highway bridge piers based on
numerical simulation considering the variation of input
ground motions. It was found that there is a significant
effect of earthquake ground motions on fragility curves.
They also developed a simplified method [6] to construct
the fragility curves of non-isolated highway bridges
considering the variation of both input ground motions
and structural parameters. It was also found that there is a
significant effect of both earthquake ground motions and
structural parameters on fragility curves.
The trend of isolating highway bridges is on the rise after

the recent damaging earthquakes in Japan, the United
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States, and other countries. Recent investigation shows
that isolated systems perform well against seismic forces as
the substructures of such systems experience less lateral
forces due to energy dissipation of the isolation device [7].
Hence, it is anticipated that there might be an effect on
fragility curves of highway bridges due to isolation; in
other words, fragility curves for non-isolated bridges may
not be applicable to predict the extent of probable damages
for isolated systems since the fragility curves of the two
systems might be different.

The purpose of this study is to develop fragility curves
for isolated bridges by following a simplified procedure [6],
and to compare them with the ones of the non-isolated
systems. In this objective, 30 isolated bridge models are
considered (and they to designed according were the
seismic design code of highway bridges in Japan) to have
a wider range of the variation of structural parameters, e.g.
pier heights, weights, and over-strength ratio of structures.
A total of 250 strong motion records are considered as the
input motions, which were selected from 5 earthquake
events that occurred in Japan, the USA, and Taiwan. Then,
using the selected input motions and isolated bridge
models, fragility curves are obtained with respect to ground
motion parameters by following a simplified approach [6].

2. Development of fragility curves

2.1. Empirical fragility curves

Yamazaki et al. [1] developed a set of empirical fragility
curves based on actual damage data from the 1995 Kobe
earthquake, and showed the relationship between the
damages that occurred to the expressway bridge structures
and the ground motion indices. In this approach, the
damage data of the expressway structures due to the Kobe
earthquake were collected, and the ground motion indices
along the expressways were estimated based on the
estimated strong motion distribution using Kriging tech-
nique. The damage data and ground motion indices were
related to each damage rank, and the damage ratio for each
damage rank was obtained. Finally, using the damage ratio
for each damage rank, the empirical fragility curves for the
expressway bridge structures were constructed assuming a
lognormal distribution [1,8].

2.2. Analytical fragility curves

The present authors [5] developed a set of analytical
fragility curves for highway bridge piers based on
numerical simulation and considering the variation of
input ground motions. The procedures adopted to con-
struct the analytical fragility curves are briefly described
below.

In this approach, first, the non-linear static pushover
analysis of the structure is performed [9,10], which includes
the shear vs. strain and moment vs. curvature analyses of
the cross-sections (it is recommended in the highway bridge
design code in Japan [11] that a pier should be divided at
least into 50 slices), and the force–displacement relation-
ship at the top of the bridge pier is obtained by using the
shear vs. strain and moment vs. curvature relationships of
all cross-sections. Using the elastic stiffness (obtained from
the force–displacement relationship), the non-linear dy-
namic response analyses [12] are performed for the selected
input ground motions, which are normalized to different
excitation levels.
The damage to the structure (pier) is then quantified by a

damage index (DI) that is obtained by using a damage
model [13] and the number of occurrence of a particular
damage rank is counted by calibrating [14] the damage
indices in different excitation levels, which is used to obtain
the damage ratio of each damage rank in each excitation
level. The damage ratio is then plotted on a lognormal
probability paper [1,5] from where the two parameters of
the fragility curves, i.e., mean and standard deviation are
obtained by performing a linear regression analysis.
Finally, fragility curves are constructed for each damage
rank with respect to the ground motion indices using the
obtained mean and standard deviation. The procedures
adopted for constructing the analytical fragility curves can
be summarized as follows:
1.
 Selection of the earthquake ground motion records.

2.
 Normalization of PGA of the selected records to

different excitation levels.

3.
 Making a physical model of the structure.

4.
 Performing a non-linear static pushover analysis and

obtaining the elastic stiffness of the structure.

5.
 Selection of a hysteretic model for the non-linear

dynamic response analysis.

6.
 Performing the non-linear dynamic response analysis

using the elastic stiffness and the selected records.

7.
 Obtaining the damage indices of the structure in each

excitation level using a damage model.

8.
 Calibration of the damage indices for each damage

rank to obtain the damage ratio in each excitation
level.
9.
 Plotting the damage ratio in each excitation level on a
lognormal probability paper and obtaining the mean
and standard deviation of the fragility curves for each
damage rank by performing a linear regression
analysis.
10.
 Construction of fragility curves using the obtained
mean and standard deviation with respect to the
ground motion indices for each damage rank assuming
a lognormal distribution.
2.3. Simplified approach to develop fragility curves

The present authors [6] also developed a simplified
method to construct fragility curves for non-isolated
bridges based on the observed correlation between the
fragility curve parameters and structural parameters. The



ARTICLE IN PRESS
K.R. Karim, F. Yamazaki / Soil Dynamics and Earthquake Engineering 27 (2007) 414–426416
procedure adopted to develop the simplified expressions of
fragility curves is briefly described below while the details
can be found somewhere else [6].

In this approach, first, the fragility curve parameters
mean l and standard deviation x are obtained by
performing a series of both non-linear static pushover
and dynamic response analyses. Then, the relationships
between mean l and standard deviation x with the over-
strength ratio y [6,11] are obtained considering all the data
points without making any subgroups. The relationships
are also obtained by making the data points into some
subgroups, for instance, data points for different codes,
pier heights, weights, etc. It is observed that l and y shows
higher correlation for the data points of each level of pier
height. Based on this observation, l for different levels of
pier heights are obtained by fixing some y using the
relationships between l and y that are obtained for
different levels of pier heights. Then, the relationship
between l and h is obtained using the following regression
model:

lh ¼ b0 þ b1hþ b2h
2, (1)

where lh is the mean with respect to h, h the height of the
pier, and b0, b1 and b2 are the regression coefficients. Like
the data points for each level of pier height, it is also found
that there is a strong correlation between l and h for
different y. It is also observed that the relationships
between l and h obtained for different y are quite parallel,
which implies that knowing only one of the relationships
between l and h for a given y, the other relationships for
different y can also be obtained knowing only some scale
factors for a change of y. In this objective, the scale factors
are obtained for changing different y for different pier
heights considering the relationship between l and h

obtained for a y equal to 1.0, and the scale factor Fy is
given as

Fy ¼ a0 þ a1Dy, (2)

where Fy is the scale factor with respect to the change of y,
Dy the change of y given as (y�1), and a0 and a1 are the
regression coefficients. Although, the scale factors for
different levels of pier heights are found to be very similar,
however, to minimize the error that might results for
different levels of pier heights, the average scale factor
obtained for different pier heights is considered [6]. Hence,
the l value can readily be obtained using Eq. (1) for a
known h, and then simply multiplying it by the scale factor
Fy of Eq. (2) that can be obtained for a known Dy . In other
words, the l value can be obtained by using the following
expression:

l ¼ lhFy. (3)

Substituting for lh and Fy from Eqs. (1) and (2) into Eq. (3)
gives

l ¼ ½b0 þ b1hþ b2h
2
�½a0 þ a1 Dy�. (4)
Similar procedure has also been adopted to obtain the
expression for standard deviation x and the expression for
x is given as

x ¼ ½b0 þ b1hþ b2h
2
�½a0 þ a1 Dy�. (5)

It should be noted that the regression coefficients of Eq.
(4) are different than that of Eq. (5), however, same
symbols are used for simplicity. It should also be noted that
the expressions of fragility curve parameters mean l and
standard deviation x given in Eqs. (4) and (5), respectively,
hold true for all damage ranks, i.e. slight, moderate,
extensive, and complete with respect to both PGA and
PGV. Another point also has to be noted that to perform
regression analysis and to obtain regression coefficients b0,
b1, b2, a0 and a1 of Eqs. (4) and (5), fragility curve
parameters mean l and standard deviation x are obtained
by following the same procedures given in the preceding
section, i.e. ‘‘analytical fragility curves’’ section, which
provides the foundation for developing the simplified
method to obtain the expressions of fragility curve
parameters [6].

3. Bridge models

3.1. Description of bridge models

In order to obtain simplified expressions of fragility curve
parameters for isolated bridges, a total of 30 bridge models
are considered to have a wider range of the variation of
structural parameters, and they were designed [15] according
to the seismic design code of highway bridges in Japan [11].
For the selected bridge models, the piers are considered
rectangular and fixed to the base [16], and a lead–rubber
bearing (LRB) is considered as the isolation device [7,16,17].
The ground condition is considered as type II, the regional
class is considered as A, and the standard lateral force
coefficient khco is considered as type II [6,11].
The bridge models are divided into three categories, viz.

bridges designed with different years’ seismic codes, bridges
having different pier heights, and bridges having different
span lengths or weights, however, the number of spans for
the all-bridge models is assumed to be four. The
substructures (piers) for any typical bridge model are
considered to be similar, in other words, one pier model
can be considered as the representative of all other piers for
a particular bridge structure. This assumption is adopted to
avoid a rigorous computation necessary to perform non-
linear pushover analyses for the all piers of a particular
bridge model. It should be noted that the non-linear
pushover analysis is performed in order to obtain the
elastic stiffness of the substructure. The physical model is
considered as the one shown in Fig. 1 and the analytical
model is shown at the right side of the physical model. It
can be seen (Fig. 1) that the analytical model consists of a
portion of superstructure, the isolation device (LRB) and
the substructure (pier). Since the main concern is the
damage of the pier, therefore, this simple analytical model
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Fig. 1. Physical model of an isolated bridge system used in this study.

Table 1

Structural properties for the 30 isolated bridge models used in this study

Design code Span length, L ¼ 30 and 40m (w ¼ 500 kN/m) Reinforcement

Pier height (m)

6 9 12 15 18 Long. Tie

Section Section Section Section Section rl (%) rt (%)

aa bb aa bb aa bb aa bb aa bb Area ratio Vol. ratio

1964 2.0 2.8 2.6 3.2 3.0 3.5 3.4 3.8 3.5 4.0 1.21 0.09

1980 2.1 3.0 2.8 3.2 3.2 3.8 3.8 4.0 3.8 4.2 1.25 0.32

1995 2.2 3.0 2.8 3.4 3.2 4.0 3.8 4.2 4.0 4.5 1.36 1.03

s0c (MPa) and ssy (MPa) are taken as the same for the all codes, and they are taken as 27 and 300, respectively.
aDimension in the longitudinal direction in m.
bDimension in the transverse direction in m.
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is adopted in this study, which suffices to see how the
bridge pier behaves with an isolation device under seismic
loading. It should be noted that if one is interested to see
the behaviour of several other components (e.g. failure of
deck, cap beam, piles, abutment, etc.) of a particular bridge
structure, then a fancy model can be adopted based on any
commercially available FEM based software for instance
SAP2000 [10], however, that is not the purpose of this
study.

Table 1 shows all the structural properties for different
categories of bridges having span length of 30 and 40m
with superstructure weight as 500 kN/m. Note that same
structural properties have been considered for the all-
bridge models having a span length of 40m, in other
words, changing only the span length or weight of the
superstructure while all other parameters being unchanged.
It can be seen that the pier cross-section changes for
different seismic design codes even having the same height,
and it changes from smaller to larger from the 1964 code to
the 1995 code. It can also be seen that the pier cross-section
also changes due to the changes of pier height even if it is
designed with the same seismic code, and it changes from
smaller to larger from pier height 6 to 18m. One can also
see that the longitudinal (area ratio) and tie (volumetric
ratio) reinforcement also changes for different seismic
codes, and the value goes higher from the 1964 code to the
1995 code.

3.2. Isolation device-LRB

Kawashima and Shoji [17] recommended that the yield
force of the LRB can be taken as 10–20% weight of the
superstructure (W), while Ghobarah and Ali [16] recom-
mended that the yield force of the LRB can be taken as 5%
W, which provides a reasonable balance between reduced
forces in the piers and increased forces on the abutments.
While several options may be considered, however, in this
study, the yield force and yield stiffness of the LRB are
taken as 5% W and 5% W/mm, respectively. Given the
yield force level and the lead yield strength of 10–10.5MPa
[15,16], the number and cross-sectional area of the lead
plugs can be designed (Fig. 2). The advantage of LRB is
that it has low yield strength and sufficiently high initial
stiffness that results in higher energy dissipation [7,15–17].
3.3. Analytical model

The analytical model consists of a portion of super-
structure, the isolation device (LRB) and the substructure
(pier) of the isolated bridge system, which is modeled as a
two-degree-of-freedom (2DOF) system [7,16,17], a bilinear
hysteretic model was considered for the both substructure
[18] and isolation device [7,15–17], the post-yield stiffness
was taken as 10% of the initial stiffness for the both
substructure and isolation device [16,17], the damping
matrix C is evaluated by using the Rayleigh damping
[12,15], and the damping constant hi is found by using the
following expression [11]:

hi ¼

Pn
j¼1hjFT

ijKjFij

FT
i KFi

, (6)

where hj is the equivalent damping constant of element j,
Fij is the mode vector of element j of the ith vibration
mode, Kj is the equivalent stiffness matrix of element j, Fi is
the mode vector of the overall structure of the ith vibration
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mode, and K is the equivalent stiffness matrix of the overall
structure.

3.4. Displacement and energy demands

Recent investigation shows that isolated systems per-
form well against seismic forces as the substructures of
such systems experience less lateral forces due to energy
dissipation of the isolation device [7]. Also, damage to the
structure for a given input motion is related to both
displacement and energy demands [13]. Hence, it is
necessary to see how the displacement and energy demands
of isolated systems differ from that of the non-isolated
ones.

Fig. 3 shows the plots of displacement and energy
histories [19] for the substructure and bearing of an isolated
system obtained from the JMA Kobe NS record of the
1995 Kobe earthquake. It can be seen that both the
displacement and energy demands of the substructure of
the isolated system is less than that of the bearing. Fig. 4
shows the plots of displacement and hysteretic energy
demands of the substructures for an isolated and a non-
isolated system obtained from the JMA Kobe NS record.
One can see that both the displacement and energy
demands of the substructure of the isolated system are less
than that of the substructure of the non-isolated ones. The
lower level of both displacement and energy demands of
the substructure of the isolated system than that of the
non-isolated ones result due to the energy dissipation of the
isolation device [7,16,17], and it implies that the isolated
system performs better against seismic forces than the non-
isolated system does.

4. Simplified expressions of fragility curve parameters

Fragility curve parameters l and x for the 30 isolated
bridge models are obtained by following the same
procedure given in the ‘‘analytical fragility curves’’ section
[5] using the selected 250 records as the input motions.
Then, simplified expressions for both the l and x of Eqs. (4)
and (5) are obtained by following the same procedure given
in the ‘‘Simplified approach to develop fragility curves’’
section [6]. Fig. 5 shows the graphical representation to
obtain the simplified expression for l for a slight damage
with respect to PGA. Fig. 6(a) shows the relationships
between l and y obtained for different damage ranks with
respect to PGA for a y equal to 1.0, and the corresponding
average scale factors for l obtained for different damage
ranks are shown in Fig. 6(b). Finally, the regression
coefficients of Eqs. (4) and (5) are obtained for all the
damage ranks with respect to both PGA and PGV by
performing both linear and nonlinear regression analyses,
and the regression coefficients are shown in Table 2. Note
that the corresponding R2 values are also shown in the
same table.

4.1. Numerical example

To see how the simplified expressions of fragility curve
parameters work, a different bridge structure is considered,
which was not used to obtain the simplified expressions.
The bridge was designed according to the recent seismic
design code for highway bridges in Japan [11]. It is assumed
that only the number of spans, span length, superstructure
weight, height and cross-section of the pier can be changed
while other conditions being the same as that of the 30
bridge models that were used to develop the simplified
expressions. For the example bridge structure, the number
of spans is assumed to be 5, the length of each span is taken
as 50m, the weight is taken as 320 kN/m, the height of each
pier is taken as 8m, and the cross-section of each pier is
taken as 2.5 by 3m. The over-strength ratio y is calculated
[6,11] as 1.21. Now, knowing the height of the pier as 8m
and y as 1.21, the fragility curve parameters l and x for
different damage ranks with respect to both PGA and PGV
are obtained using the simplified expressions given in Eqs.
(4) and (5), and using the regression coefficients given in
Table 2. l and x are also obtained by performing a series of
both nonlinear static pushover and dynamic response
analyses.
Table 3 shows the list of the fragility curve parameters

for the example bridge structure obtained from both
analytical and simplified methods, and the corresponding
errors e for both l and x with respect to the analytical ones
are also shown in the same table. Figs. 7 and 8 show the



ARTICLE IN PRESS

0 20 40 60 80
-20

-10

0

10

20

30

Time [s]

D
is

p
la

c
e
m

e
n
t 
[c

m
]

Displacement response hystory

substructure

bearing

0 20 40 60 80
0

0.5

1

1.5

2

x105

Time [s]

E
n
e
rg

y
 [
k
N

-c
m

]

Energy of the substructure

input
hysteretic+damping

damping 

0 20 40 60 80
0

2

4

6

8

x105

Time [s]

E
n
e
rg

y
 [
k
N

-c
m

]

Energy of the bearing

input

hysteretic+damping
damping

0 20 40 60 80
0

2

4

6

8

10

x105

Time [s]

E
n
e
rg

y
 [
k
N

-c
m

]

Energy of the system

input

hysteretic+damping
damping

a b

c d

Fig. 3. Displacement and energy histories of an isolated bridge system obtained from the JMA Kobe NS record of the 1995 Kobe earthquake, (a)

displacement response histories of the substructure and bearing, (b) energy of the substructure, (c) energy of the bearing, and (d) energy of the system.

0 10 20 30 40 50 60 70 80
-6

-4

-2

0

2

4

6

8

10

12

Time [s]

D
is

p
la

c
e
m

e
n
t 
[c

m
]

Displacement of

the substructure

isolated
non-isolated

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x105

Time [s]

E
n
e
rg

y
 [
k
N

-c
m

]

Hysteretic energy

of the substructure

isolated
non-isolated

a b

Fig. 4. (a) Displacement response histories, and (b) hysteretic energy of the substructures of an isolated and a non-isolated bridge system obtained from

the JMA Kobe NS record of the 1995 Kobe earthquake.

K.R. Karim, F. Yamazaki / Soil Dynamics and Earthquake Engineering 27 (2007) 414–426 419
fragility curves for all damage ranks with respect to PGA
and PGV, respectively, obtained from both analytical and
simplified methods. It can be seen that the fragility curves
obtained by both analytical and simplified methods seem to
be very close with respect to PGV, however, a very small
difference is observed with respect to PGA for the all-
damage ranks. Note that the maximum error with respect
to both PGA and PGV for both l and x are shown in Table
3 with an underline mark. It can be seen that the maximum
error for l with respect to both PGA and PGV is found to
be only 1.8%, and for x it is found as 19.8%.
It should be noted that l controls the amplitude and x

controls the shape of the fragility curves. The 19.8% error
for x does not necessarily mean that it might result in a
significant effect on the fragility curves, and the evidence
can be seen in the fragility curves (Figs. 7 and 8). Hence,
the error terms for both l and x given in Table 3 seem to be
within an acceptable range, and the simplified method may
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conveniently be used to construct the fragility curves for
isolated bridge structures knowing the height h and over-
strength ratio y only. It should be noted that the simplified
expressions of fragility curve parameters are obtained
based on a set of isolated bridge systems, and these
simplified expressions for fragility curve parameters may
conveniently be used to construct the fragility curves of
similar kind of isolated bridge structures that fall within the
same group and have similar characteristics.

5. Fragility curves for both isolated and non-isolated bridges

The present authors [6] also developed simplified
expressions to construct fragility curves of non-isolated
highway bridges. In this study, following the same
procedure, simplified expressions are also developed to
construct the fragility curves for isolated highway bridges,
which are given in the preceding section. Since simplified
expressions show the correlation between the fragility curve
parameters and the structural parameters, they might
conveniently be used to construct the fragility curves for
the both isolated and non-isolated bridges. However, since
the two systems are different, it is necessary to see how the
fragility curves of both the systems differ from each other
based on the simplified expressions.
Fig. 9 shows the plots of the relationship between

fragility curve parameter mean l and pier height h for a y
equal to 1.5 obtained from the simplified method for both
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Table 2

List of the regression coefficients for the fragility curve parameters obtained from the simplified method

Indices DR Parameters

l x

lh ¼ b0+b1h+b2h
2 Fy ¼ a0+a1Dy xh ¼ b0+b1h+b2h

2 Fy ¼ a0+a1Dy

b0 b1 b2 s R2 a0 a1 s R2 b0 b1 b2 s R2 a0 a1 s R2

PGA S 6.30 0.03 �0.0024 0.022 0.984 1.00 0.11 0.00 1.00 0.40 �0.0006 �0.0006 0.007 0.990 1.00 �0.39 0.00 1.00

M 6.58 0.01 �0.0005 0.031 0.812 1.00 0.10 0.00 1.00 0.41 0.0002 0.0001 0.012 0.981 1.00 �0.38 0.00 1.00

E 6.67 0.02 �0.0010 0.017 0.906 1.00 0.10 0.00 1.00 0.27 �0.0008 0.0003 0.015 0.971 1.00 �0.63 0.00 1.00

C 7.02 �0.02 0.0003 0.047 0.770 1.00 0.10 0.00 1.00 0.38 �0.0043 0.0002 0.002 0.997 1.00 �0.70 0.00 1.00

PGV S 4.42 0.001 �0.002 0.013 0.998 1.00 0.31 0.00 1.00 0.59 �0.001 �0.0002 0.007 0.967 1.00 0.24 0.00 1.00

M 4.25 0.091 �0.004 0.036 0.933 1.00 0.26 0.00 1.00 0.59 0.005 �0.0005 0.008 0.978 1.00 0.48 0.00 1.00

E 4.51 0.080 �0.004 0.016 0.994 1.00 0.29 0.00 1.00 0.63 0.004 �0.0005 0.010 0.969 1.00 0.47 0.00 1.00

C 489 0.068 �0.003 0.015 0.973 1.00 0.18 0.00 1.00 0.87 �0.034 0.0007 0.011 0.991 1.00 0.67 0.00 1.00

DR: damage rank, S: slight, M: moderate, E: extensive, C: complete.

Table 3

List of the fragility curve parameters for the example isolated bridge structure obtained from both analytical and simplified methods

Indices DR Parameters

l x

Analytical Simplified Error, e (%) Analytical Simplified Error, e (%)

PGA S 6.60 6.56 0.61 0.52 0.51 1.57

M 6.82 6.77 0.77 0.47 0.45 3.46

E 6.94 6.89 0.72 0.42 0.41 2.14

C 7.14 7.03 1.55 0.42 0.34 19.77

PGV S 4.60 4.57 0.61 0.59 0.60 1.04

M 4.96 4.96 0.12 0.63 0.66 3.52

E 5.26 5.16 1.80 0.75 0.69 7.86

C 5.46 5.43 0.53 0.75 0.73 3.05

DR: damage rank, S: slight, M: moderate, E: extensive, C: complete.
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isolated and non-isolated systems for different damage
ranks with respect to PGA. Note that the simplified
expressions for the non-isolated system were taken from
the previous study [6]. It can be seen that the l for the
isolated system is higher than that of the non-isolated one
for the all-damage ranks for a lower level of pier height,
which implies that the level of damage probability for the
isolated system is less than that of the non-isolated one
when the level of pier height is not so large. However, one
can see that as the pier height changes from lower to a
higher level, the mean l of the isolated system seems to get
closer to the non-isolated one, and eventually, in case of
extensive and complete damages, it is less than that of the
non-isolated one after a certain level of pier height. Similar
trend is also found with respect to PGV, and the plots are
shown in Fig. 10.

The trend of converging the mean l of the isolated
system with that of the non-isolated one for a higher level
of pier height implies that if the pier height of the bridge is
very high, for instance, say more than 20m, then the
isolated system may not be so effective. It should be noted
that fragility curves are also a function of standard
deviation x, and both the mean l and standard deviation
x are also functions of scale factor Fy that is obtained for a
given over-strength ratio y. Hence, to see the effect of
isolation on fragility curves, it is necessary to construct
them for the both isolated and non-isolated systems
considering all these factors.
Fig. 11 shows the plots of the fragility curves for the

isolated and non-isolated bridges for an extensive damage
with respect to PGA obtained from the simplified expres-
sions for different level of pier heights with an over-
strength ratio y equal to 1.5. It can be seen (Figs. 11(a) and
(b)) that the level of damage probability for the isolated
system is less than that of the non-isolated one for a pier
height of 5 and 10m, respectively, and its damage level
seems to be similar to that of the non-isolated one when the
pier height is 15m (Fig. 11(c)). Now, if one looks at
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Fig. 8. Comparison of the fragility curves obtained from both analytical and simplified methods for an isolated bridge system with respect to PGV.
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Fig. 7. Comparison of the fragility curves obtained from both analytical and simplified methods for an isolated bridge system with respect to PGA.
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Fig. 11(d), then it can be seen that the level of damage
probability for the isolated system is higher than that of the
non-isolated one where the pier height is 20m. Similar
trend is also observed on the fragility curves obtained for
both isolated and non-isolated systems with respect to
PGV, and the plots are shown in Fig. 12.
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Fig. 10. Comparison of the relationship between l and h for y equal to 1.5 obtained from the simplified method for the isolated and non-isolated bridge

systems for different damage ranks with respect to PGV.
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Fig. 11. Comparison of the fragility curves for the isolated and non-isolated bridge systems with respect to PGA obtained from the simplified method for

different pier heights, all for an extensive damage with y equal to 1.5.
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Note that the over-strength ratio y is considered being
the same for all levels of pier heights, and it is taken as 1.5.
It means that when the pier height is to be higher then even
having the same over-strength ratio, the level of damage
probability for the isolated system goes higher compared to
the one of the non-isolated system. Several factors may be
addressed in this regard. Firstly, simple expressions are
obtained for a limited range of pier heights, i.e. 6 to 18m,
which may imply that the simple expressions are valid only
for the said range of pier heights. Secondly, the strength for
the isolation device is considered as the same (5% W) for
the all level of pier heights, which may underestimate the
energy dissipation of the isolation device for a higher level
of pier heights. Thirdly, due to the elongation of the
natural period, the pier with more height become less stiff
(i.e. more flexible) compared to the one with less height.
This observation is supported with the fact that an
isolation device is more effective for a stiff structure and
it turns out to be very less effective for a flexible structure.
Finally, the failure of the isolation device is not considered
in this study, which may have some effect on the fragility
curves for a higher level of pier height.

Although, the soil–structure interaction (SSI) effect is
generally not so severe for non-isolated bridge structures
except for the case with strong soil non-linearity, isolated
bridges are regarded to be more susceptible to the effect of
SSI during an earthquake [20]. Thus, it is anticipated that
there might be an effect on the fragility curves of isolated
bridges due to SSI; hence, a further study is recommended
in this regard. Also, several other factors should be kept in
mind, for instance, different design codes in other
countries, several other components of bridge structures
(e.g. failure of deck, cap beam, piles, abutment, etc.),
different seismic zones, different soil conditions, etc. While
the present study considers only a few of them (e.g. failure
of bridge pier, seismic zone A, soil type II, lateral force
coefficient of type II, Japanese seismic design code for
highway bridges, etc.), however, same simple approach can
be adopted in deriving the simple expressions for fragility
curve parameters of isolated bridge structures considering
all the parameters or a combination of several parameters.

6. Conclusions

Simple expressions of fragility curve parameters for
isolated highway bridge structures were obtained based on
numerical simulation with respect to the ground motion
parameters using 250 strong motion records. Fragility
curves for the both isolated and non-isolated systems were
also constructed based on the obtained simplified expres-
sions and using the seismic design code of highway bridges
in Japan.

It was observed that the level of damage probability for
the isolated system is less than that of the non-isolated one
for a lower level of pier height. However, having the same
over-strength ratio of the bridges, the level of damage
probability for the isolated system is found to be higher for
a higher level of pier height compared to the one of the
non-isolated system. It implies that the level of damage
probability for the isolated systems tends to be higher for a
higher level of pier height. This might be due to fact that
the failure of the isolation device was not considered in the
present study as well as the strength of the isolation device
was considered as the same for the all level of pier heights.
In other words, the fragility curves may differ from the one
where the failure of the isolation device as well as different
level of strengths of the isolation device for different level
of pier heights would have been considered.
The simple expressions may be a very useful tool, and

may conveniently be used to construct the fragility curves
for isolated bridges in Japan that fall within the same
group and have similar characteristics. However, it is
anticipated that the simple expressions of fragility curves
developed in this study may not be applicable for the
isolated systems that have SSI effect, and a further research
is recommended in this regard. Also, the same simple
expressions may not be applicable for other countries since
it is based on only Japanese seismic design code, however,
the same simple approach may be adopted in constructing
the fragility curves using different seismic codes of other
countries.
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