
Image fluctuation model for damage detection using middle-resolution
satellite imagery

M. KOHIYAMA*{ and F. YAMAZAKI{
{Department of System Design Engineering, Faculty of Science and Technology,

Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

{Department of Urban Environment Systems, Faculty of Engineering, Chiba University,

1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan

(Received 24 June 2004; in final form 16 June 2005 )

A damage detection method using middle-resolution satellite images, the Image

Fluctuation Model method, is proposed, which employs a stochastic model of the

digital number (DN) fluctuation in a normal condition and its significance test.

The DN fluctuation model is formulated by considering an imaging process of a

satellite sensor and an image registration process. A resulting thematic map is

created based on a confidence level (12significance level), which is defined on a

pixel-by-pixel basis as follows: the minimum significance level at which the null

hypothesis, that the pixel DN can be considered as a sample of the DN fluctuation

model, is rejected. The confidence level provides the model-based probability of

ground surface change. The method is applied to the 2003 Bam, Iran earthquake

using images acquired by Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) of Terra. The receiver operating characteristic

curves of the method showed better detection performance than temporal image

differencing or temporal image ratioing. Though the detection performance of

building damage was not comparable to visual inspection on a building basis using

high-resolution images of QuickBird, the confidence level map shows similarity at

the district level to damage assessment results using high-resolution images.

1. Introduction

Although high-resolution satellite imagery has received much attention due to its

imaging capability, middle-resolution satellite imagery for which the ground

sampling interval is larger than 10 m should also be utilized for damage detection.

This is for the following reasons: (1) its wider swath can depict the perspective view of
wide-ranging disaster areas; (2) its ample archive of previously acquired images can

provide pre-event images for almost any location after a disaster. In addition, the cost

of an image per area is considerably lower than that of a high-resolution image. It is

commonly accepted practice for all available information to be used for disaster relief

activities. Thus, we have to promote research in the area of damage detection

methods using middle-resolution imagery as well as higher-resolution imagery.

Many researchers have proposed change detection procedures: comparison of

land cover classifications, multi-date classification, image differencing/ratioing,

index differencing (e.g. vegetation index, tasselled-cap indices), principal compo-

nents analysis and change vector analysis (Singh 1989, Lu et al. 2004). In the final
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stage of most techniques, change and no change may be judged by a simple

thresholding as a ‘0–1’ binary response:

change x, yð Þ~
0 f Qð ÞƒTð Þ
1 f Qð Þ > Tð Þ

�
ð1Þ

where x and y represent the location of interest on the ground, the vector Q

represents digital numbers (DNs) of satellite images (Q can also represent multi-

band and/or multi-temporal data) and T is the threshold value provided statistically

or empirically by the analyst. There are many criteria used in order to determine the

threshold. These are based on two probability density functions with respect to Q

corresponding to two hypotheses that change does occur and that change does not

occur: e.g. Bayes criterion, maximum a posteriori (MAP) detection, maximum

likelihood criterion (ML), minimum error probability criterion, minimax criterion,

Neyman–Pearson criterion (Van Trees 1968, Kazakos and Papantoni-Kazakos

1990, Poor 1994, McDonough and Whalen 1995, Helstrom 1995, Hippenstiel 2002).

Once threshold values are introduced, the change in categorical attributes of the

target areas can be evaluated, e.g. from forest to urban, from no change to change.

In the case of damage detection, however, it is a difficult task to determine a

threshold value discriminating damage and no damage after a severe disaster

because we often face the lack of prior reference data of damage areas (images

containing damage), i.e. it is difficult to obtain the probability density function

corresponding to a hypothesis that change does occur. In addition, a threshold value

derived from few reference data is unreliable; moreover, a threshold value may

change from region to region and from country to country. This is because the

inherent variety of urban structures implies that a certain threshold may not be valid

for a different city any longer.

By giving up using a threshold of a binary response, the damage detection result

can be depicted in a map with colours or grey levels based on magnitude of a certain

measure of change, such as DN difference. With respect to this measure of change,

probabilistic expression, e.g. probability of damage occurrence, makes it much

easier for an analyst to interpret the result map than difference in DN or change of

reflectance. Hence, probabilistic expression of damage occurrence rather than a

binary response result can alleviate the difficulty associated with the uncertainty and

arbitrariness of threshold values and has the added advantage that an image

interpreter can easily understand the credibility of the evaluation result.

Morisette et al. (1999) proposed the use of generalized linear models (GLMs) in

change detection and the generation of a thematic map of ‘probability of (category)

change’. However, GLMs such as logit and probit models require sample reference

data in a regression analysis, and deficiency of reference images of earthquake damage

and the above-mentioned regional differences hinder the employment of GLMs.

Hence, a new approach is necessary to overcome these problems. Kohiyama et al.

(2004) proposed a method to estimate disaster-afflicted areas based on night-time

images acquired by the Defense Meteorological Satellite Program Operational

Linescan System (DMSP-OLS). That approach used significance levels (confidence

levels) in a thematic map based on a probability density function of radiance of urban

city lights, which are derived from multiple pre-event images; i.e. a probability density

function corresponding to the hypothesis that change does not occur is solely used.

This paper provides a theoretical framework to the method of Kohiyama et al.

(2004) for non-sensor-specific images (either daytime or night-time) that are
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acquired by a middle- or low-resolution sensor on a satellite and proposes a new

damage (change) detection method, introducing a probability model of DN

fluctuation in an image pixel and its significance test. The method overcomes

uncertainty, arbitrariness, and difficulty of threshold setting in conventional change

detection methods.

2. Damage detection method based on a probability model of digital numbers in

multi-temporal images

2.1 Digital number of middle-resolution image as a random variable

Our proposed method to detect damage is based on the principle that the DN of a

fixed point (location on the ground) can be considered as a random variable. DNs of

remotely sensed images change and fluctuate even in a normal (non-disaster)

situation. This section explains how DN can be modelled as a random variable

based on the overall sensor model of an electro-optical remote sensing system

(Schowengerdt 1997).

In the scanning operation of a satellite sensor, the radiance of band b, sb, is

converted into the electric signal, eb:

eb x, yð Þ~
ð ð

sb a, bð ÞPSF x{a, y{bð Þ da db ð2Þ

where PSF is the point spread function (PSF) of the whole sensor system, and a and

b are parameters for spatial integration; e.g. a in the cross-track direction and b in

the along-track direction. The function PSF of equation (2) includes an optical

process. As an example, the PSF of the Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER) of Terra is shown in figure 1. The shape of the

PSF is estimated based on the measured values of the modulation transfer function

at the Nyquist and the 1/2 Nyquist spatial frequencies for the along-track and cross-

Figure 1. Estimated point spread function of VNIR radiometer subsystem of Terra-ASTER.
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track directions with the specified values with respect to the visible–near infrared

(VNIR) radiometer subsystem (Earth Remote Sensing Data Analysis Center 2001).

The analog-to-digital (A/D) converter samples and quantizes the electric signal

into discrete DN values, P(x, y):

P x, yð Þ~int gainb|eb x, yð Þzoffsetbð Þ ð3Þ

where gainb and offsetb represent the parameters of the linear A/D conversion.

These equations implicitly include the conversion from a continuous spatial

coordinate to a discrete one. Usually, the discrete coordinates are different among

images, and there exists a difference of the sample-scene phase, or pixel centre offset,

that is the relative location of the pixels and the target. The relative spatial phase is

unpredictable and typically unknown for any given image acquisition. We assume it

follows the two-dimensional uniform probability distribution between ¡1/2 pixels

for the cross-track and along-track directions.

In an analysis using multi-temporal images, all the images are registered and the

offsets are adjusted to the single reference image. The bilinear interpolation or the

cubic convolution is typically used in registration, and these interpolation processes

are expressed as:

Q x, yð Þ~int 1{t {t½ �
P11 P12

P21 P22

� �
1{s

{s

� �� �
for bilinear interpolation ð4Þ

Q x, yð Þ~int S 1ztð Þ S tð Þ S 1{tð Þ S 2{tð Þ½ �

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

2
666664

3
777775

S 1zsð Þ

S sð Þ

S 1{sð Þ

S 2{sð Þ

2
666664

3
777775

0
BBBBB@

1
CCCCCA

S tð Þ~

aPCCz2ð Þ tj j3{ aPCCz3ð Þ tj j2z1 tj j < 1ð Þ

aPCC tj j3{5 tj j2z8 tj j{4
� �

1ƒ tj j < 2ð Þ

0 tj j§2ð Þ

8>>><
>>>:

&sinc tð Þ~ sin pt

pt

� �
for cubic convolu

ð5a; bÞ

where the Q(x, y) is an integer DN of the registered image, the vector (x, y) is the

location in the adjusted coordinate system, Pij represents DNs of the 4 or 16 points

surrounding the point (x, y) as shown in figure 2. The parameter aPCC520.5 is

used as an optimal value (Keys 1981, Park and Schowengerdt 1983, Schowengerdt

1997). The vector (s, t) represents the phase of two directions with each element

ranging from 0 to 1 (figure 2), and this is a random variable following the two-

dimensional uniform probability distribution, as we assumed. Therefore, by

assuming there is no quantization error in equation (3), the DN of the registered

image, Q(x, y), is:

Q x, yð Þ&int gainb

ð ð
sb a, bð ÞSPSF x{a, y{bð Þ da dbzoffsetb

� �

SPSF x, yð Þ~
Xn

i~1

Xn

j~1

WijPSF x{xij, y{yij

� 	 ð6a; bÞ

for cubic convolution

(5a, b)
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and

Wij


 �
~

1{t

{t

� �
1{s {s½ � for bilinear interpolation n~2ð Þ ð7Þ

Wij


 �
~

S 1ztð Þ
S tð Þ

S 1{tð Þ
S 2{tð Þ

2
6664

3
7775 S 1zsð Þ S sð Þ S 1{sð Þ S 2{sð Þ½ � for cubic convolution n~4ð Þ ð8Þ

where the vectors (xij, yij) (i51, 2, …, 4 and j51, 2, …, 4) represent the pixel centre

locations of the surrounding 16 points. The equations (6a, b), (7) and (8) describe

the DN of a pixel as a random variable. Thus, the DN of the same target varies

from acquisition to acquisition even in a normal, non-disaster condition.

Registration errors always remain even if sub-pixel accuracy is achieved in

registration. This has the effect of increasing the randomness of the DNs. Obviously,

there exist other well-known factors that increase the randomness: electronic noise

in a sensor system, atmospheric correction error, solar position difference (shade,

shadow, etc.), phenological change, soil moisture differences, relative ground

sampling interval changing along the off-nadir scan angle, etc. The quantization

error in equation (3), which we assumed to be negligible in the formulation, is also

one of the factors.

2.2 Modelling of probability distribution of digital numbers

As formulated in the previous section, the DN of each location can be modelled as a

random variable. Equations (6a, b) and the two-dimensional uniform distribution of

the variables s and t can be employed in evaluating the probability distribution of

DN. Alternatively multi-temporal images serve as sample data to evaluate the

probability distribution. Although the number of pre-event images may be limited,

collecting these images is much easier than conventional approaches of change

Figure 2. A point to be registered with a digital number of Q(x, y), and points used in
registration with digital numbers of Pij based on (a) the bilinear interpolation and (b) the
cubic convolution. Note that parameters s and t range [0, 1) to indicate the location of a point
to be registered, (x, y).
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detections: gathering reference images of earthquake damage for training data and

considering regional differences between the reference and target areas.

The DN fluctuation model for some categorized urban areas is an optional

solution to increase the sample data, but it may result in decreased change detection

accuracy because pixels with different probability distributions are involved and the

variance of the categorized model is clearly larger than that of a single pixel model.

2.3 Damage or change detection based on a significance test

Suppose that the DN or the fluctuation of DN is given as the probability

distribution Pr(Q), where Q represents a DN in an image acquired at a non-eventful

time, i.e. before a disaster. Now, we introduce the following null hypothesis:

Null hypothesis H0: When the digital number, q(x, y), of the location (x, y) on the

ground is acquired, q(x, y) is considered as a sample of the probability distribution,

Pr(Q).

A significance test is made based on a significance level of a. If q is in a range of

small fluctuation and H0 cannot be rejected, we have no choice but to accept there is
no change on the ground. But, if H0 is rejected, we can judge that there exists an

abnormal change on the ground which exceeds the fluctuation level at a non-

eventful time, i.e. possible damage. Therefore, considering the significance test for

each location, a significance level, a(x, y), which satisfies the following equation can

be evaluated on a pixel-by-pixel basis:

1{a~

ðq2

q1

pr Qð Þ dQ ð9Þ

where pr(Q) is a probability density function of Pr(Q) and the integration range, [q1,
q2], is given by pr(q1)5pr(q2)5pr(q) and q1,q2 as in a two-sided test. Figure 3 depicts

the evaluation of confidence level, 12a, which is given by integration of the

probability density between q1 and q2. The confidence level, 12a, means that the

observed DN, q, is considered to be abnormal (a change or damage occurs there)

Figure 3. Evaluation of confidence level, 12a. In this example, q, which is a digital number
acquired after a disaster, includes a change (damage) with confidence level 12a.
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with this probability. Note that Pr(Q) can be any probability distribution other than

the normal (Gaussian) distribution.

As previously mentioned, the DN fluctuation model for some categorized urban

areas is an alternative way to increase the sample data, but it may result in decreased

change detection accuracy because pixels following different probability distribu-

tions are involved and the variance of the categorized model is clearly larger than

that of a single pixel model.

Finally, the map of credibility (probability) of damage occurrence will be obtained

by mapping the distribution of the confidence level, 12a, or the significance level, a.

2.4 Flow of damage detection

Figure 4 shows the flow chart of our proposed method, the Image Fluctuation

Model (IFM) method to detect damage (change) using middle-resolution imagery

acquired by a satellite sensor:

N Step 1: Collect the multi-temporal pre-event images.

N Step 2: Register these images and compensate for radiometric and atmo-

spheric effects.

N Step 3: Evaluate a probability distribution, Pr(Q), for each DN using the

above processed images.

N Step 4: Acquire a post-event image.

N Step 5: Register the post-event image and compensate for radiometric and

atmospheric effects.

N Step 6: Evaluate the significance level, a, or the confidence level, 12a, on a

pixel-by-pixel basis for each pixel in a target area using each probability model,

Pr(Q), so that the null hypothesis, that the DN is a sample of Pr(Q), can be

rejected with the significance level a.

N Step 7: Create a thematic map of confidence level, 12a, to depict the damage

(change) probability of each pixel.

Figure 4. Flowchart of the Image Fluctuation Model (IFM) method. For pre-event images,
registration and correction of radiometric and atmospheric effects, which might be very time-
consuming, can be done in advance before occurrence of a severe disaster if these processes
are implemented in an image archiving system.
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The bottleneck of the processing time exists in precise registration and in

compensation of radiometric and atmospheric effects of images. However, these

processes for pre-event images can be carried out in advance if they are implemented

in an image archiving system.

2.5 Images applicable to the Image Fluctuation Model

Considering the source of the randomness of DN comes from the uncertainty of a

sample-scene phase, any other images derived from satellite imagery theoretically

imply the same randomness. In other words, any value of raw band data, index (e.g.

normalized difference vegetation index) or principal component can be the input

variable, Q, in equation (4) or (5a, b).

In addition, it is a simple matter to expand the dimension of Q and Pr(Q) into a

higher order by using a multi-dimensional probability distribution. This is done in

order to apply them to multi-band imagery. Figure 5 describes evaluation of

confidence level, 12a, in the case that the input variable is two-dimensional, i.e.

Q5(Q1, Q2). In the upper left side of the figure, an oblique view of a probability

density surface, Pr(Q1, Q2), is shown where Q1 and Q2 are two independent digital

numbers of a satellite image. When a datum q is observed, the iso-probability-

density line (contour line) including the point q can be defined as shown in the

vertical view in the lower left of the figure; this contour line bounds the integration

region A. The confidence level, 12a, is given by integration of the probability

density in the region A. The confidence level, 12a, is equal to the volume of the

object that is bounded by the probability density surface, the Q1Q2-plane, and the

surface made by the above-mentioned contour line moving to the Pr(Q1, Q2)

direction.

Figure 5. Evaluation of confidence level, 12a, when the fluctuation model of digital
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If the DN fluctuation model is assumed as a multi-dimensional Gaussian

distribution, a contour surface of the probability density becomes a hyper-ellipsoid

(figure 6). In this case, the confidence level, 12a, is given by integration of the

probability density in the region V that is bounded by the contour surface including

an observed datum q. This hyper-ellipsoid seems to be similar to the Ellipsoidal

Change Detection (ECD) method proposed by Dai and Khorram (1998), which

employs a Gaussian distribution and the Mahalanobis distance function of an n-

dimensional difference image. But the IFM method differs substantially from

the ECD method; the former method does not require threshold setting whereas the

latter method does. The resulting thematic map of the IFM method shows the

confidence level (or significance level) of each pixel area and it reflects the credibility

of the possible damaged area.

3. Application to the 2003 Bam, Iran earthquake

3.1 2003 Bam, Iran earthquake

The 2003 Bam, Iran earthquake devastated Bam City in Kerman province. Eshghi

and Zare (2003) reported that the Bam earthquake of 26 December 2003 (Mw56.5)

occurred at 01:56:56 UTC (05:26:26 local time) around Bam City in south-east Iran.

According to the United Nations, Office for the Coordination of Humanitarian

Affairs (UN-OCHA 2004a) as of 17 March 2004, the updated assessment of the

impact of the earthquake, as provided by the Government of Iran, indicates that

there were approximately 43 200 people dead, 15 000 still under medical treatment,

2000 orphaned and up to 90 000 people displaced. This was in addition to the

destruction of 50 000 houses in Bam and the surrounding rural areas. The number of

people affected by loss of economic activity and damage to property and

infrastructure was up to 200 000. Because the earthquake struck at a time when

most residents were sleeping, it had a great impact on number of lives lost. In

contrast to the aforementioned reported statistics, Iran’s statistics office announced

Figure 6. Evaluation of confidence level, 12a, when the fluctuation model of digital
numbers is expanded into a multi-dimensional probability distribution.
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that the death toll in Bam City was 26 271 as of 30 March 2004 (United Nations

Office for the Coordination of Humanitarian Affairs, 2004b).

3.2 Satellite images used in the study

For damage detection due to this earthquake in Bam City, satellite images acquired

by Terra-ASTER were employed, of which the ground sampling distance was 15 m

for the three nadir-looking bands and one backward-looking band of the VNIR

radiometer (Yamaguchi et al. 1998, Abrams 2000). Table 1 shows the spectral bands

and the looking directions of VNIR radiometer of Terra-ASTER. In this case study,

17 pre-event images and one post-event image of the product Level 1B (radiance

registered at sensor) were used. One exception, an image of 23 February 2003 (2003-

02-23), is listed in table 2. With respect to the 2003-02-23 image (referred to the

master image), the product Level 2B05V (surface reflectance) was used as a master

reference image in registration and histogram matching in order to adjust the DN

scale to reflectance. In generating the product Level 2B05V, data provided by US

National Centers for Environmental Prediction (NCEP) was used for sources of

water vapour profile, temperature profile and pressure profile. Climatological

estimates were used for other sources of aerosol, ozone, carbon dioxide, etc. In the

master image, Bam City was acquired in the centre of a swath (nadir from the

satellite) rather than in an edge part. Note that the 18 images were selected since they

had very few or no clouds above Bam City. When the sun elevation, earth–sun

distance, and topographic and atmospheric effects are considered, it seems that the

product level of surface reflectance should be used for all the images. However, if the

product level of surface reflectance was used for all the images, the result of the

confidence levels became significantly large for most of the pixels in the post-event

image; this is possibly due to soil moisture change because there was precipitation a

few days before the post-event image acquisition and the signal-to-noise ratio of

change detection clearly increased. Thus, this study focused on the change in relative

Table 1. Spectral bands and looking directions of VNIR radiometer of Terra-ASTER.

Band name
Spectral range (wavelength

range, mm) Looking direction

Band 1 0.52–0.60 Nadir
Band 2 0.63–0.69 Nadir
Band 3 0.76–0.86 Nadir
Stereoscopic band* 0.76–0.86 Backward

*Not used in the study.

Table 2. Acquisition dates of Terra-ASTER images of Bam City used in the study.

Period No. of images Acquisition date (year-month-day)

Pre-event 17 2000-07-15, 2001-05-15, 2001-06-09, 2001-07-11, 2001-07-27,
2001-11-16, 2002-03-08, 2002-03-15, 2002-04-16, 2002-06-19,
2002-10-25, 2002-11-10, 2003-02-07, 2003-02-23*, 2003-05-05,
2003-08-09, 2003-10-28

Post-event 1 2004-01-02

*For the 2003-02-23 image, Level 2B05V product (surface reflectance) was used as a master
image in registration; for the others, Level 1B images (radiance registered at sensor) were used.
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spatial pattern rather than the absolute reflectance change in urban areas for each
spectral band. From a practical standpoint, the sun elevation, earth–sun distance,

and topographic and atmospheric effects were simply excluded by histogram

matching of DNs with respect to pixels in the urban areas of Bam City. In selection

of pixels in the urban areas, the normalized difference vegetation index (NDVI),

(Band 32Band 2)/(Band 3 + Band 2) where Band n means a digital number of

ASTER Band n, was used for the master image, and the criterion NDVI less than

0.3 was adopted as shown in figure 7. In this city, the vegetation areas, which have

large NDVI, consist mostly of date palm plantation farms. It should be noted that
the months of the acquisition dates of the pre-event images are distributed evenly

throughout a year, and thus seasonal change is included in the models of DN

fluctuation. Therefore, this bias would reduce the signal-to-noise ratio in damage

detection.

3.3 Modelling of digital number fluctuation

3.3.1 Registration of pre-event images. First, image registration was carried out

with respect to the 17 pre-event images. Some of the pre-event images do not cover

the entire urban area of Bam City and the number of pre-event images at each

location is shown in figure 8, in which the grey near-vertical stripes overlaying the

city image show the areas that have the same number of pre-event images. The

numbers of pre-event images are noted both above and below the stripes. Fifty
ground control points (GCPs) (30 GCPs for the 2002-03-15, 2002-04-16 and 2002-

11-10 images due to the narrower coverage) were selected from the intersections of

roads in the master image of 2003-02-23. The locations of GCPs in an image to be

registered (referred to as a slave image) were sought with accuracy up to a tenth of

pixel size (i.e. 1.5 m) with iterative analysis so that the locations give the maximum

image correlation with the master image. Note that Dai and Khorram (1998)

showed that highly accurate change detection based on multi-temporal Landsat

Figure 7. Pixels used for histogram matching (shown in white), which are derived from the
urban areas of Bam City, and those pixels with a normalized difference vegetation index,
(Band 32Band 2)/(Band 3 + Band 2), less than 0.3 for the 2003-02-23 master image (Band n
means a digital number of ASTER Band n).
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Thematic Mapper images requires that the magnitude of misregistration be less than

0.2 pixels. Since slight band-to-band misregistration is observed in VNIR images of

Terra-ASTER, especially in the images in which Bam City was acquired in the edge

part of the swath rather than the centre, registration was carried out band by band.

Note that ERSDAC (2001) describes the baseline performance requirements of in

intra-telescope registration accuracy as 0.2 pixels, which suggests that precise change

detection using multi-band images requires the re-registration of the images even

though the images were acquired by the same telescope system simultaneously. In

evaluation of image correlation, a window size of 51651 was used considering skew

and rotation of a slave image based on the GCPs of the previous step in the iterative

analysis and a histogram of DNs in a window of a slave image matched to that of

the master image. Based on 50 pairs of the identified GCPs (or 30 pairs for the

above-mentioned three images), the 16 slave images were registered by using a

warping method of the bilinear interpolation. The bilinear interpolation method is

expected to result in a smaller influence of a significantly changed DN on the

surrounding pixels than the cubic convolution method since a smaller number (4) of

surrounding pixels is used rather than a larger number (16) as shown in figure 2.

3.3.2 Histogram matching of digital numbers. After registration, the DNs of the

pre-event images were linearly transformed on a band basis so that the average and

the standard deviation of DNs of the pixels in urban areas shown in figure 7 may

become identical to those of the master image. Figures 9 and 10 show the pre-event

2003-02-23 image (the master image) of the product Level 2B05V, and the post-

event 2004-01-02 image, which was registered and histogram-matched from the

product Level 1B to the master image, respectively. In these images, red, green and

blue represent ASTER Bands 3, 2 and 1, respectively.

Figure 8. Numbers of pre-event images covering Bam City; the grey near-vertical stripes
overlaying the city image show the areas that have the same number of pre-event images; the
numbers of pre-event images are shown both above and below the stripes.
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Figure 9. Pre-event image of Bam City acquired on 23 February 2003; red, green and blue
correspond to ASTER Bands 3, 2 and 1, respectively. The product level of surface radiance
(Level 2B05V) was used.

Figure 10. Post-event image of Bam City acquired on 2 January 2004; red, green and blue
correspond to ASTER Bands 3, 2 and 1, respectively. The image was registered and
histogram-matched from the product of radiance registered at sensor (Level 1B) to the master
image.
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3.3.3 Examination of the digital number fluctuation and its modelling. The means

and unbiased standard deviations of DNs were calculated on a pixel-by-pixel basis.

Figures 11 and 12 show the average and standard deviation of DNs of the pre-event

images, respectively; those in the western areas (left in the images) were calculated

from a smaller number of images than 17 due to lack of coverage as mentioned in

figure 8. The characteristics of the DN fluctuations were investigated with respect to

10 sample points: five in residential areas and five on intersections of roads. These

are marked in green and yellow in figure 11, respectively. Histograms of DN

deviations (DN differences from the average divided by the unbiased standard

deviation) of ASTER Band 1 are depicted in figures 13 and 14 with respect to the

points in residential areas and those on intersections, respectively. Although the

shape of the distribution of each point is not symmetric due to the limited number of

pre-event images, the distribution resembles the Gaussian distribution reasonably

well. The normal probability plots of the DN deviations of ASTER Band 1 are

shown in figure 15. From figures 13, 14 and 15, a clear difference is not observed

between the samples in residential areas and those on intersections of roads.

In figure 15, regarding Point 4, the probability of observing a value far from the

median is greater than it would be for the Gaussian distribution, i.e. the distribution

is heavy-tailed in a normal quantile-quantile plot with ordered data values on the

vertical axis. The existence of very bright and dark objects in the fringe areas of the

surrounding pixels could form this kind of distribution because the digital number

of a pixel is interpolated by those of the surrounding pixels.

However, the other points do not share this heavy-tailed distribution. Thus, for

simplicity, the DN fluctuation is modelled by a Gaussian distribution on a pixel-by-

pixel basis with a mean and an unbiased standard deviation. It should be noted that

other models such as the Student’s t distribution might explain the fluctuation better

for Point 4; however, strictly speaking, neither the Gaussian distribution nor the t

distribution gives an exact model. This is firstly because the number of samples is

too small, as suggested by small sample theory (e.g. Fisher 1970). In addition, as

shown in equations (6a, b), a DN fluctuation is expressed by a weighted average of

DNs of the pixels surrounding a point of interest, in which the weights are functions

of the two-dimensional uniform probability distribution, and bounded by the DNs.

Thus, the employed Gaussian distribution is an approximation model for simplicity.

In this study, the number of pre-event images is not enough to construct a DN

fluctuation model of multi-dimensional distribution of ASTER Bands 1, 2 and 3.

Hence, three one-dimensional DN fluctuation models were developed and

confidence levels were evaluated on a band basis based on them. The model

difference among the three bands is discussed in the following section.

3.4 Damage detection results

The post-event image acquired on 2 January 2004 was registered and histogram-

matched in the same manner as the pre-event images. Then, based on the derived

stochastic models of DN fluctuation, the confidence levels, 12a(x, y), were

evaluated for the post-event image on a pixel-by-pixel basis as follows:

1{a x, yð Þ~1{2W {
Qpost x, yð Þ{m x, yð Þ

s x, yð Þ

����
����

� �
ð10Þ

where W(?) is a normal distribution function, and Qpost(x, y), m(x, y) and s(x, y) are
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the DN at the pixel location (x, y) in the post-event image, the mean and the

standard deviation of the pre-event images at the pixel location (x, y), respectively.

Figure 16 shows the distribution of the confidence levels with respect to ASTER

Band 1 of the post-event image, in which confidence levels are shown in colour on

Figure 12. Standard deviation of the pre-event images of Bam City; red, green and blue
correspond to ASTER Bands 3, 2 and 1, respectively.

Figure 11. Average of the pre-event images of Bam City; red, green and blue correspond to
ASTER Bands 3, 2 and 1, respectively. Markers show the sample points, which are used to
depict histograms of digital number deviation.
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the monochrome master image of ASTER Band 1. High confidence levels, such as

those shown in yellow, orange or red, suggest significant ground surface change,

which appear more in the eastern part of the city. Because confidence levels reflect

scaled DN change from the average in terms of the assumed Gaussian distributions,

some of the confidence levels are extremely large near unity, e.g. 99.99% or greater.

For comparison, figure 17 shows the distribution of the confidence levels in the

pre-event image of 28 October 2003, corresponding to no earthquake damage (but

very minor change could exist due to a non-disaster event, e.g. newly constructed

buildings). In this case, stochastic models were evaluated by using the 16 pre-event

Figure 14. Histograms of digital number deviations of ASTER Band 1 with respect to the
five sample points on road intersections. Unbiased standard deviations are used to form class
values.

Figure 13. Histograms of digital number deviations of ASTER Band 1 with respect to the
five sample points in residential areas. Unbiased standard deviations are used to form class
values.
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images acquired before 28 October 2003. In figures 16 and 17, areas with high

confidence levels in the north (upper and slightly left) of the figure are due to traces

of water flow. The number of pixels with high confidence levels in figure 17 is

considerably smaller than that in figure 16. This fact suggests that the proposed

method may yield few commission errors (detection of false damage in non-

damaged areas). In the next section the damage detection result is compared with

those based on visual inspection of high-resolution images.

3.5 Comparison with the results based on high-resolution images

3.5.1 Comparison with the district-level image interpretation results. After the Bam

earthquake, several organizations assessed the damage based on high-resolution

satellite images or aerial photographs and made the district-level results available

through the Internet (National Cartographic Center of Iran 2004, German Remote

Sensing Data Center of the German Aerospace Center 2004, UNOSAT 2004, Bessis

2004). The confidence level map based on Terra-ASTER imagery was compared

with these damage detection results based on high-resolution images.

The German Remote Sensing Data Center of the German Aerospace Center

(2004) evaluated the damage based on the IKONOS image acquired on 27

December 2003 (Space Imaging 2004), for which resolution is 1 m in the

panchromatic band and 4 m in the multi-spectral bands. Severely damaged areas

were identified in the north-eastern and south-eastern parts of the city. The National

Cartographic Center of Iran (2004) and United States Agency for International

Development (2004) assessed the earthquake damage of Bam City based on aerial

photographs and created a damage distribution map as a preliminary result. The

map illustrates extensive damage in the north-eastern and south-eastern parts of the

city (80–100% destroyed areas). The French sector, Service Régional de Traitement

d’Image et de Télédétection (SERTIT), analysed the damage using SPOT, IRS and

Figure 15. Normal probability plot of the digital number deviations of ASTER Band 1 with
respect to 10 sample points.
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Figure 17. Distribution of the confidence level with respect to ASTER Band 1 of the pre-
event image of Bam City acquired on 28 October 2003. There are considerably fewer pixels
with a high confidence level in urban areas in comparison with the case using the post-event
image (figure 16).

Figure 16. Distribution of the confidence levels with respect to ASTER Band 1 of the post-
event image of Bam City acquired on 2 January 2004 (in colour) overlaying the monochrome
master image. High confidence levels, shown in yellow, orange or red, suggest significant
ground surface change, which appears more in the eastern part of the city.
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IKONOS images (UNOSAT 2004) as an activity of International Charter ‘Space

and Major Disasters’ (Bessis 2004). The north-eastern and south-eastern parts were

identified as severely damaged areas and damage was observed in the western part of

the city as well. In figure 16, pixels with high confidence levels appear more in the

eastern part of the city. This tendency shows agreement with these results based on

high-resolution images.

3.5.2 Comparison with the result of image interpretation on a building basis. Yano

et al. (2004) surveyed damage to buildings in Bam City based on visual inspection of

the QuickBird images, for which resolution is 0.6 m in the panchromatic band and

2.4 m in the multi-spectral bands. The damage detection results derived from Terra-

ASTER imagery were analysed in comparison with this visual inspection result on a

building basis based on receiver operating characteristic (ROC) curves. In the

damage inspection of Yano et al. (2004), two images were used: the pre-event image

acquired on 30 September 2003 and the post-event acquired on 3 January 2004. The

building damage was classified according to the European Macroseismic Scale 1998

(European Seismological Commission 1998): Grade 1, negligible to slight damage;

Grade 2, moderate damage; Grade 3, substantial to heavy damage; Grade 4, very

heavy damage; and Grade 5, destruction. Grade 1 and 2 damage was indistinguish-

able (total 1593 buildings) because sides of buildings were not observed in the

satellite images, and buildings surrounded by debris (total 3790), partially collapsed

buildings (total 1694) and totally collapsed buildings (total 4930) were identified as

Grades 3, 4 and 5, respectively. Figure 18 shows the location of the buildings and

their damage grade with colour overlaying the monochrome master image of

ASTER Band 1.

Figure 18. Visual inspection result of building damage in Bam City (in colour) based on
QuickBird images acquired on 30 September 2003 and 3 January 2004 (Yano et al. 2004).
Damage levels are based on the European Macroseismic Scale 1998 (European Seismological
Commission 1998): Grade 1, negligible to slight damage; Grade 2, moderate damage; Grade
3, substantial to heavy damage; Grade 4, very heavy damage; Grade 5, destruction.
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The damage classification results were stored as point data in a geographical

information system, associated with the centre of buildings in the pre-event

QuickBird image. First, these point locations were transformed into the coordinates

of the master image of the pre-event ASTER image. Then, considering the size of

buildings, the pixels within 10 m of each of the transformed points were identified

and the maximum confidence level of these pixels was selected as the confidence

level corresponding to the visual inspection result (Grades 1/2, 3, 4 or 5). This was in

order to detect partial damage to a building and debris spread around a building.

Because it was very rare for a pixel to include a whole building, visible damage most

probably existed in a pixel adjoining the pixel in the centre of a building. Hence, if

only the centre pixel was checked, the rate of miss (false negative) tended to increase.

The radius, 10 m, was determined based on the typical size of the houses in the

QuickBird image.

The ROC curve is a two-dimensional graph of probability of detection, PD, versus

the probability of false alarm, PFA (Van Trees 1968, Swet and Pickett 1982, Poor

1994, Helstrom 1995, Hippenstiel 2002, Wickens 2002). In the PDPFA-plane, an

ROC curve connects (0, 0) and (1, 1) in the upper-left-hand plane above the diagonal

from (0, 0) to (1, 1). The diagonal corresponds to no detection ability, and a curve

passing closer to (0, 1) means higher detection performance, i.e. the detection

method has a higher signal-to-noise ratio.

The ROC curves were evaluated for each band. With respect to damage grade,

three thresholds were used in order to investigate whether the detection performance

changes depending on the threshold; three cases of damage occurrence were

considered: Grade 3, 4 or 5/Grade 4 or 5/Grade 5. First, a certain value was assigned

to the threshold of the confidence level (referred to as a cut-off value). Then, for

each building, the confidence level was compared with the cut-off value and the

signal was given as positive (the confidence level is larger than the cut-off value) or

negative (vice versa). After that, the signal was compared with the damage

occurrence and the result was classified into four categories: true positive (TP), false

positive (FP), false negative (FN) and true negative (TN). The probability of

detection (sensitivity or true positive rate), PD, and the probability of false alarm

(false positive rate), PFA, was calculated by PD5TP/(TP + FN) and PFA5FP/

(FP + TN), respectively, where TP, FP, FN and TN reflect the number of the above-

mentioned four cases. Finally, by sliding the cut-off value, multiple points (PFA, PD)

were evaluated to draw the ROC curve. Figure 19(a) shows the ROC curves for

damage detection results based on the IFM method using Terra-ASTER images.

With respect to ASTER Bands, Bands 1 and 3 show better performance than Band

2. Regarding damage grade, detection performance decreases when Grade 3 is

included in the condition of damage occurrence. In order to compare ROC curves of

the IFM method with those of conventional change detection methods, damage

detection was conducted by temporal image differencing (TID) and temporal image

ratioing (TIR). In the case of the TID method, DN difference between the post-

event and pre-event images, |Qpost2Qpre|, where Qpre and Qpost are DNs of the pre-

event 2003-02-27 and post-event 2004-01-02 images respectively, was used instead of

confidence level in the evaluation of the ROC curves, as shown in figure 19(b). In the

case of the TIR method, |Qpost2Qpre|/Qpre was used instead of the confidence level

and the ROC curves are shown in figure 19(c). Clearly, the ROC curves of the IFM

method pass closer to the upper-left corner point than those of TID or TIR, and

thus exhibit better detection performance. This is because in the IFM method a
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threshold (confidence level) corresponds to various DNs, which are different from

pixel to pixel, while in the TID and TIR methods a threshold (DN difference or DN

ratio) is uniformly applied to all the pixels in an image.

However, the detection performance of the IFM method cannot be considered

good in an engineering sense: 50% or more true positive rate is desired for the region

in which the false positive rate is 10% or more. The confidence level map was

compared with the post-event QuickBird image (figure 20) and the causes of the low

detection performance of the building damage were identified as follows: (1) Some

pixels of the ASTER image included multiple buildings that had different damage

levels, and these were indistinguishable due to the resolution limitation. (2) Some

buildings in the residential area reflect very similar spectra and intensities even after

experiencing collapse or severe damage. (3) The dusty roads were identified as

Figure 19. Receiver operating characteristic (ROC) curves for damage detection results
using Terra-ASTER images based on (a) the Image Fluctuation Model method, (b) the
temporal image differencing method and (c) the temporal image ratioing method. Nine curves
in each graph were evaluated for three bands (ASTER Bands 1, 2 and 3) and three grades of
damage occurrence (Grade 3, 4 or 5/Grade 4 or 5/Grade 5).
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significant DN change (mostly increase), possibly due to debris spread or the

demolition work. (4) Vehicles near a building were sometimes identified as

significant DN change. Consequently, for more accurate damage detection in this

city, texture or object-based analysis using high-resolution images, in which shapes

of buildings, roads and vehicles are easily identified, might be necessary.

As far as the IFM method with the DN fluctuation model derived from multi-

temporal images is concerned, the spatial resolution of Terra-ASTER is not

sufficient to identify the damage experienced by each building. Rather, it reflects the

general ground surface change related to a disaster event. Nevertheless, the method

might be useful for detection of other damage or ground surface changes due to a

hazard, such as liquefaction, flooding, wildfire, and spread of a certain material.

4. Conclusions

A new damage (change) detection method, the Image Fluctuation Model (IFM)
method using middle-resolution images acquired by satellite sensors, was proposed,

which employs the probability distribution model of DN fluctuation in a normal

condition and its significance test. The resulting thematic map is created from the

significance level to reject the null hypothesis that the pixel DN can be considered as

a sample of the DN fluctuation model.

The proposed method was applied to the 2003 Bam, Iran earthquake using Terra-

ASTER images. In the case study, between 13 and 17 pre-event images were used to
model the DN fluctuation. Based on the comparison between confidence level maps

for pre-event and post-event images, it was suggested that the method is useful in

detection of significant ground surface change due to a disaster and has few

commission errors. In comparison with the result of damage assessment using high-

resolution images (National Cartographic Center of Iran 2004, German Remote

Sensing Data Center of the German Aerospace Center 2004, UNOSAT 2004, Bessis

2004), the confidence level map based on the IFM method shows similarity at the

district level. Damage detection performance was examined by ROC curves based
on the result of the visual inspection of building damage conducted by Yano et al.

(2004) using the pre-event and post-event QuickBird images. The ROC curves of the

Figure 20. Comparison between the post-event QuickBird image and the confidence level
map based on the Image Fluctuation Model Method using Terra-ASTER images.
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IFM method showed better detection performance than two conventional change

detection methods: temporal image differencing and temporal image ratioing.

However, the detection performance of the IFM method using Terra-ASTER

images was not satisfactory in an engineering sense. This was because the limited

resolution of the ASTER images could not distinguish buildings with different

damage levels, some of the buildings in the study area showed very similar spectra

and intensities even after experiencing collapse or severe damage, and ground

surface change other than building damage, such as soil or debris spread on roads

and the presence of vehicles, caused significant DN change. It was suggested that

texture or object-based analysis using a high resolution image might be necessary for

more accurate damage detection in this city.

In future research, the validity of modelling and the accuracy of the IFM method

should be examined based on other satellite images and further ground truth data of

earthquake damage. In addition, DN fluctuation models of multi-band imagery

using multi-dimensional probability distributions should be examined for the

improvement of accuracy.

It is also necessary to devise simple and reliable methods to construct DN

fluctuation models. In the case of the 2003 Bam, Iran earthquake, 13 to 17 pre-event

images were available, but this number was still not sufficient to develop a multi-

band fluctuation model. Disaster relief is a highly time-sensitive matter. Thus, it will

be very helpful if DN fluctuation models can be constructed with a small number of

pre-event images since it would reduce the processing time in damage detection, and

it is often the case that the number of available pre-event images is very limited.

One of the promising ways to model DN fluctuation without many pre-event

images is to use a high-resolution image. Based on equations (6a, b), it is

theoretically possible to simulate the DN fluctuation if the point spread function

of a sensor is known and a single image with sufficiently high resolution is available.

Another approach is to introduce a bold assumption in the characteristics of

fluctuation models. In order to reduce the processing time, but at the expense of the

accuracy of damage estimation, Kohiyama et al. (2004) introduced the assumption

that all the pixels have the same standard deviation of DN fluctuation, which

enables fluctuation models to be evaluated from a couple of images. This kind of

approach might be effective even for the images acquired by other sensors.
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