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Abstract A mixed model is proposed to fit earthquake interevent time distribution. In 
this model, the whole distribution is constructed by mixing the distribution of clustered 
seismicity, with a suitable distribution of background seismicity. Namely, the fit is tested 
assuming a clustered seismicity component modeled by a non-homogeneous Poisson 
process, and a background component modeled using different hypothetical models 
(Exponential, Gamma and Weibull). For southern California, Japan and Turkey, the best 
fit is found when a Weibull distribution is implemented as a model for background 
seismicity. Our study uses Earthquake Random Sampling (ERS) method we introduced 
recently. It is performed here to account for space-time clustering of earthquakes at 
different distances from a given source, and to increase the number of samples used to 
estimate earthquake interevent time distribution and its power law scaling. For Japan, the 
contribution of clustered pairs of events to the whole distribution is analyzed for different 
magnitude cutoffs mc and different time periods. The results show that power laws are 
mainly produced by the dominance of correlated pairs at small and long time ranges. In 
particular, both power laws, observed at short and long time ranges, can be attributed to 
time-space clustering revealed by the standard Gardner and Knopoff’s declustering 
windows. 
Keywords Recurrence times ⋅ Distribution fit ⋅ Mixed model ⋅ Palm-Khintchine 
equations ⋅ Power laws ⋅ Scaling 

1 Introduction 

Seismicity temporal patterns remain one of the hottest topics discussed in earth sciences 
(e.g., Utsu 2002). Nowadays, characteristic signatures of these patterns are resumed in a 
series of scaling laws (or power laws) depicting pertinent scale invariant behaviors in 
seismicity. Typical examples, dating back to the last century, are the classical Gutenberg-
Richter, Omori, and Båth laws (Omori 1894; Gutenberg and Richter 1942; Utsu 1961; 
Båth 1965). More recent examples are induced by the fractal nature of plate tectonics, 
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faults, and hypocenter distribution (e.g., Kagan and Knopoff 1980; Sornette and 
Pisarenko 2003). 

Recently, Bak et al. (2002) and Christensen et al. (2002) used aggregated seismicity 
from different locations in Southern California to introduce a new scaling law (called 
hereafter “Bak’s scaling law”) for earthquake interevent times. The law describing two 
power law (PL) regimes separated by a characteristic kink, has been generalized and 
extended to the case of disaggregated seismicity within a single region (Corral 2003, 
2004a,b, 2005). However, the scaling law for a single region was different and presented 
a steeper decrease at large interevent time comparing to Bak’s scaling law. These two 
versions of earthquake interevent time distribution (EITD) are sometimes called local and 
mixed EITD, in reference to the distribution for a single region and Bak’s scaling law 
which mixes interevent times from different locations. Nowadays, extensive research is 
focused on the study of EITD and its scaling for broad areas (e.g., Saichev and Sornette 
2006, 2007; Corral 2007; Molchan and Kronrod 2007; Talbi and Yamazaki 2009). In 
particular, many studies reported departures and discrepancies in the claimed scaling laws 
and their parameterization (Davidsen and Goltz 2004; Carbone et al. 2005; Lindman et al. 
2005, 2006; Molchan 2005; Corral and Christensen 2006; Hainzl et al. 2006; Saichev and 
Sornette 2006, 2007; Molchan and Kronrod 2007, Talbi and Yamazaki 2009). 

Despite the above critics and the broad use of local and global catalogs from all 
over the world to establish both EITD scaling laws, the fluctuations of their 
parameterization had rarely been studied (Talbi and Yamazaki 2009). Former studies 
were restricted to testing the scaling accuracy and in the affirmative to depicting the 
potential new interesting features it implies, using the nonhomogeneous Poisson process 
(e.g., Lindman et al. 2005; Molchan 2005) and the epidemic type aftershock sequence 
(ETAS) (Ogata 1988) model (e.g., Hainzl et al. 2006; Saichev and Sornette 2006, 2007). 
Early arguments against EITD scaling had been evoked by Molchan (2005) who urged 
the exponential up tail of the distribution (in sharp contrast with observations) under 
some general assumptions. The study was taken back by Saichev and Sornette (2006, 
2007) who reviewed extensively the scaling issue and showed that the presence of 
Omori-Utsu clusters destroy the exact unified scaling law while giving an approximate 
unified law fitting the real data. 

Whereas for a single region the local EITD has been fitted with a Gamma 
distribution since its establishment (Corral, 2003), Bak’s scaling law is relatively difficult 
to fit because of the slow decrease at long interevent times. This former yields a 
controversial non-exponential decrease, inconsistent with a plausible Poisson model at 
this range. The first attempt to fit Bak’s scaling law, which is mainly motivated by the 
problematic non-exponential decrease, has been challenged by Saichev and Sornette 
(2007). Despite their original approach and detailed synthesis, their analysis is restricted 
to the ETAS model and uses sophisticated mathematical background which is not 
accessible to non-specialists. Empirical tools combined to nonparametric models could be 
useful to simplify their view and extrapolate their conclusions to the observed “model-
free” seismicity structure. An attempt in this way is given here using a simple model 
which combines empirical observations with some standard hypothetical distributions to 
fit the data. 

This study is a continuation of our former work Talbi and Yamazaki (2009) mainly 
based on the study of EITD deviation from the PL behavior. It extrapolates some of our 
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former results and methodology, to fit EITD assuming the decomposition of seismicity 
into background and clustered (or dependent) components. We proceed in three steps. 
First, our data base is filtered using classical declustering algorithms to assess artificially 
the role of spatio-temporal correlation in the observed scaling. Secondly, we develop 
analytically our mixed model using point processes Palm theory. Finally we carry on the 
fit issue in application using several implemented background candidate distributions. As 
a relevant result, our model is found to fit the data exceptionally well when a Weibull 
distribution is implemented as interevent time distribution for the background seismicity 
process. 
 

2 Earthquake catalog preparation and model selection 

Main earthquake data files used in this study are described in Talbi and Yamazaki (2009). 
For Japan, the file includes events from the JMA catalog, and a compiled version of Utsu 
catalog for the historical period. For southern California, files covering the time period 
1932-2005 were compiled from the Southern California National Network, together with 
Kagan catalog (Kagan et al. 2006). Further details about these data sources and their 
compilation can be found in Talbi and Yamazaki (2009). Turkey data covering the period 
550 BC-2004 were downloaded from Kandilli Observatory website at the link 
http://www.koeri.boun.edu.tr/sismo/veri_bank/ mainw.htm. Fig. 1a, b, c show the selected 
areas and the epicenter distribution of the earthquake data files used in this study. 

(a) 

 

 

 

Fig. 1 Epicenter distribution of earthquakes in (a) 
Japan between 679 and 2005 as compiled from 
the JMA and Utsu catalogs, (b) Southern 
California between 1932 and 2005 and (c) 
Turkey between 550 BC and 2004. 
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(b) 

 

(c) 

 

 

Former study of completeness magnitudes by Talbi and Yamazaki (2009) led to four 
schemes for Japan and three schemes for southern California. The same study was carried 
out for Turkey and resulted in three schemes. For each region, these schemes cover 
different time periods and are complete above some threshold magnitudes mc, as 
summarized in Table 1 below, 

Table 1 

Parameters of the sampling schemes used in this study. 

mc, N and R denote the magnitude of completeness, the number of events with magnitude M≥mc, 
and the ERS sampling radius, respectively. 
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Scheme  Time period mc N R [km] 

Southern California 

1 

2 

3 

1990-2005 

1947-2005 

1932-2005 

2.5 

3.5 

4.7 

21257 

6006 

556 

50 

50 

50 

Japan 

1 

2 

3 

4 

1990-2005 

1975-2005 

1923-2005 

1890-2005 

3.5 

4.5 

5.5 

6.5 

37352 

11406 

3664 

590 

50 

50 

100 

200 

Turkey 

1 

2 

3 

1988-2004 

1960-2004 

1960-2004 

3.5 

4.5 

5.5 

4472 

1537 

127 

50 

100 

200 

 

In all the following sections, only Japan data are used extensively. The use of Southern 
California and Turkey data is restricted to the tests of our mixed model in section 6. 

 

3 Declustering the earthquake catalog 

The identification and the remove of aftershocks in earthquake sequences, commonly 
called ‘declustering’ is not an exact science and depend more or less on some subjective 
parameters (controlling the time-space widows) predefined in the approach used. Several 
declustering algorithms were proposed, among which the most standard are Gardner and 
Knopoff (1974) and Reasenberg (1985). In fact, declustering can only be used for 
qualitative preliminary studies; quantitative studies are affected by artifacts created by the 
subjectivity in the methodology. Being aware of this shortcoming and after intensive tests 
on the catalog used, we adopted Gardner and Knopoff (1974) approach. It is found more 
simple and stable than other methods and its windows parameters suitable for removing 
large fluctuations of seismic activity in space and time. In this method, space-time 
windows are considered around each event in the catalog. The size and the duration of 
each window vary with the magnitude of the potential mainshock. The largest event in 
each window is identified as mainshock, while the others are removed as either 
foreshocks or aftershocks. Fig. 2 shows the seismicity rate in Japan during the period 
1990-2005 before and after declustering. Main fluctuations are removed by the 
declustering algorithm, making the activity rate close to stationarity. 
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In Section 5, the results of declustering are used carefully in the qualitative 
preliminary assessment of the contribution of clustered pairs of events to the observed PL 
scaling. The other sections are independently carrying out the parameter estimation either 
analytically or based on empirical results. 

 

4 Earthquake Random Sampling – ERS 

The ERS algorithm was introduced by Talbi and Yamazaki (2009). A description of its 
main steps can be found in the same reference. Interevent time samples are drawn many 
times from a random collection of disks with a predefined radius R to produce a mean 
estimate of EITD. The main steps can be resumed as follows. 

Step1. A random epicenter x(0) (identified by its longitude and latitude) is selected from 
the epicenter distribution map. 

Step 2. Assuming a given target radius r>0, a second epicenter x(1) is selected as the 
nearest neighbor of x(0) at a distance greater or equal to r from x(0). 

Step 3. x(2) is selected as the nearest neighbor of x(1) at a distance greater or equal to r 
from x(0) and x(1) 

Steps 4, 5,…, i defines x(3), x(4),…, x(i-2), x(i-1) in a similar way. For example, x(i-1) is 
defined in the step i as follows: 

Step i. x(i-1) is the nearest neighbor of x(i-2) at a distance greater or equal to r from x(0), 
x(1),…, x(i-2). 

If we deal with a finite number of epicenters and at least one of them is situated outside 
the disk centered on x(0) with radius r, then our algorithm stop in the step m+2 with m≥0, 
for which the nearest neighbors of x(m) (say x(m+1)) is at a distance smaller than r from one 
of the above selected epicenters x(0), x(1),…, x(m). This step exclude x(m+1) which is 
therefore not selected. 

Fig. 2 Seismicity rate during the 
period 1990-2005 for events with 
magnitude M≥3.5 in the original 
JMA catalog (black line) and in 
the Gardner and Knopoff 
declustered catalog (gray line). 
Large fluctuations of seismicity 
are removed as shown from the 
resulting rate after declustering 
(gray line). Vertical dashed lines 
show the time of each M≥7.0 
earthquake. 
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The set of points (x(i))i=0,1,…,m constructed earlier are called r-target points whereas the 
family of the above processes, defined for all randomly chosen origin x(0), is called the 
family of r-target processes.  

ERS is used iteratively to provide samples required in EITD estimation. In each 
iteration, a set of r-target points (x(i))i=0,1,…,m, is selected. Then, for each sampling disk 
D(x(i), R) centered on x(i) with radius R = r/2, the corresponding interevent times ( )i

jτ , j = 
1, 2, …, ni, are calculated (ni is the number of interevent times). The resulting m samples 

( )( ) mi

nj
i

j
i

,,1,0

,,1

K

K

=

=
τ  are mixed together to estimate EITD. After several ERS runs, the mean 

distribution is derived. In general, Earthquake Random Sampling with target radius r and 
sampling radius R is noted ERS(r,R), whereas the case R = r/2, considered in this study, is 
noted ERS(R). 

Fig. 3a displays the ERS(50) strategy map for Japan scheme 2 of Table 1, with the 
corresponding sampling R-disks and target r-disks (R=50 km, r=100 km). In this case, the 
interevent times have been calculated for events occurred within 50 km from targets, and 
using only sampling disks including more than 50 events. Fig. 3b shows the extent of the 
sampling regions after 10 ERS runs for Japan scheme 1 of Table 1. 

(a) 

0 200    400 km

 125°  130°  135°  140°  145°  150° 

 25° 

 30° 

 35° 

 40° 

 45° 

 50° 

 

Fig. 3 (a) One run ERS(50) sampling 
strategy map, showing sampling disks with 
R=50km and target disks with r=100km, 
for Japan scheme 2 of Table 1. (b) Stacked 
sampling disks defining the sampling 
region extent corresponding to ten ERS(50) 
runs of Japan scheme 1. 
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(b) 
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5 Analysis of earthquake interevent time distribution 

In this section, we focus on the analysis of the EITD as mixed from different locations 
using ERS. Following Talbi and Yamazaki (2009), the distribution is scaled by the 
inverse of the mean interevent time τ of the mixed sample ( )( ) mi

nj
i

j
i

,,1,0

,,1

K

K

=

=
τ  as follows, 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=
τ
τ

τ
τ FD ~1

,     (1) 

with, 

( )

∑

∑∑

=

= == m

i
i

m

i

n

j

i
j

n

i

0

0 1
τ

τ      (2) 

Note that τ could be replaced by the inverse of the total mean rate of seismicity used by 
Corral (2003, 2004a) (Talbi and Yamazaki, 2009). 

Since the ERS procedure select randomly the first target point x(0), different EITD 
estimates are obtained when running ERS many times. The resulting averaged EITD is 
particularly consistent in case of poor data. For example, in Fig. 4 below, we were able to 
reproduce the shape of the mean EITD using 103 ERS(200) runs for M≥6.5 events 
corresponding to Japan scheme 4. 
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In order to estimate EITD for different magnitude thresholds, we considered 
completeness magnitudes mc from the schemes already selected in Table 1. EITD for 
Japan has been estimated using the schemes 1, 2, 3 and 4 with sampling radiuses R equal 
to 50, 50, 100 and 200 km, respectively. We performed 10, 50, 100 and 500 ERS runs for 
the schemes 1, 2, 3 and 4 respectively. Fig. 5a shows the mean EITD for the whole 
catalog with its corresponding PL scaling. More details about the calculation of the mean 
distribution and the PL regressions can be found in Talbi and Yamazaki (2009). Note that 
the choice of the sampling radius R does not affect in any way the shape of the 
distribution D (e.g., Fig. 5b below and Fig. 6 of Talbi and Yamazaki (2009)). R in Table 
1 is selected in order to guarantee a sufficient number of events in each sampling disk. 

Fig. 4 Mean EITD (Eq. 1) as 
estimated for Japan scheme 4 
using 103 ERS(200) runs. 
Dashed lines correspond to 
different ERS runs whereas the 
mean distribution is shown in 
grey. 
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(a) 
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(b) 

10-1 100 101 102 103
10-7

10-6
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τ D
( τ
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M≥3.5 1990-2005 R=50km
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M≥3.5 1990-2005 R=150km
M≥3.5 1990-2005 R=200km

 

Fig. 5. (a) Stacked mean EITDs for 
Japan using the schemes in Table 
1. Solid lines show the power law 
tendency whereas dashed lines 
show the 95% confidence limits. 
(b) Stack of the EITDs for Japan 
scheme 1 (Table 1), obtained using 
ERS(R) with different sampling 
radiuses R = 50, 100, 150, 200 km. 
(c) EITDs for Japan estimated 
using Gardner and Knopoff 
declustered catalog. The solid 
curve shows the exponential fit 
with maximum likelihood estimate 
of the mean λ = 0.73. Dotted 
curves correspond to the 
exponential distributions obtained 
using the 95% confidence limits of 
λ (λ1=0.49 and λ2=1.19). There is 
no trace of the first power law 
observed for the whole catalog in 
Fig 5a. The main body of the 
distributions is close to the 
corresponding exponential 
distribution at 95%, apart from the 
far up tail at standardized 
interevent times exceeding 10. The 
deviation corresponding to high 
magnitude cutoffs (M≥5.5 and 
M≥6.5) observed for standardized 
interevent times below 0.01, is 
attributed to the poor data at this 
time range. The decrease at the 
upper tail is still consistent with a 
power law (dashed line). 
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(c) 

10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

100

101

102

τ /τ

τ  
D

(τ
 )

M≥3.5 1990-2005 R=50km
M≥4.5 1975-2005 R=50km
M≥5.5 1923-2005 R=100km
M≥6.5 1890-2005 R=200km

 

A simple way to test the contribution of spatio-temporal clustering to the observed 
scaling is to compute the same distributions after removing correlated events in the sense 
of Gardner and Knopoff (1974) windowing algorithm. Such distributions are plotted in 
Fig. 5c. As suspected, the first PL is completely disappearing, showing that the filtered 
clustering structure is responsible of the PL tendency at short time scales. To ensure that 
this conclusion is not an artifact of the specific space-time windows used, we checked in 
addition the stability of our results using the windowing suggested by Uhrhammer (1986) 
and Knopoff (2000). In all cases, the first PL is destroyed. This conclusion generalizes 
the former results by Saichev and Sornette (2007) showing that in the context of ETAS 
model, the first PL is aftershock made with exponent close to the Omori p-value. At the 
opposite, the second PL does not disappear totally, but drop close to an exponential 
decrease especially for scheme 2 (Fig. 5c). The drop is consistent with a steep long range 
PL. This situation can be produced by the deficiency of the time-space windowing used 
to remove aftershocks. Indeed the declustering algorithm may remove also some 
background seismicity identified as clustered. A long range clustering is also possible 
(e.g., Kagan and Jackson, 1991; Corral 2004b; Lombardi and Marzocchi, 2007; Lennartz 
et al, 2008). At long range, the distributions reflect the behavior of interevent times 
mainly for low seismic rates which induces the observed PL for interevent times (Corral 
2003; Saichev and Sornette, 2006, 2007). 

In order to analyze the contribution of dependent events on the whole interevent 
time scale, the whole and background distributions D  and DB are estimated using the 
whole and the declustered catalogs respectively; then, the following deviation d is 
computed, 

( ) ( ) ( )τττ BDDd −=      (3) 

Note in this case the following decomposition of the distribution D, 

( ) ( ) ( )τττ dDD B ±=      (4) 
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The deviation d for Japan scheme 1, 2 and 3 (Table 1) is plotted in Fig. 6, 
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As expected, the clustered pairs of events are most active at short time ranges, with a 
maximal contribution (about 80-90%). This marks the dominance of the correlated 
process at this time range. The contribution drops gradually (to a level below 27%) 
around the kink at 1=τ , marking the dominance of the uncorrelated pairs of events. But 
amazingly starts to increase again (to reach eventually 50-70%) for relatively large time 
ranges. This increase in the contribution from correlated pairs at long ranges is supposed 
to be in part responsible of the long range PL of D. Since some residual catalogs could 
exhibit long term clustering (Kagan and Jackson, 1991), this behavior can be produced by 
correlated events that are possibly acting at long ranges producing the observed PL. 
Another possibility is that some independent events are identified as clustered events by 
the declustering windows. Note that the declustering algorithm removes all earthquakes 
within the influence volume of mainshocks, including eventual independent events, 
especially for low magnitude schemes with events more close in space and time. 
However, this hypothesis can not be checked since the definition of clustered events in 
any declustering algorithm is subjective. 

The difficulties faced in the former analysis and the subjectivity in the definition of 
earthquake clusters motivated us to look for a theoretical seismicity model that accounts 
systematically for both seismicity components with no need to separate between them in 
practice (even though modeled separately in theory). Next section uses Palm theory to 
introduce analytically a mixed seismic model for EITD, in which background and 
clustered seismicity components contribute with proper weights. The parameters are 
fitted directly to the whole EITD although the model is tested using different background 
distributions. 

 

Fig. 6 Percentage of contribution of the 
clustered pairs of events to the whole 
distribution, calculated using Gardner 
and Knopoff (1974) declustering 
windows. The contribution is dominant 
for short interevent times and decrease 
gradually. Uncorrelated pairs are 
dominant around the change point 
between the two power laws. However, 
the contribution from clustered pairs 
starts to increase again after the change 
point. Their dominance at large 
interevent times is supposed to reflect 
long range correlation or failure of the 
declustering algorithm at long time 
range. Note that the power laws in Fig 
5a are observed when the clustered 
pairs are dominant. 
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6 Mixed models to fit EITD 

For a stationary point process, the distribution of the forward recurrence time F is a 
weight biased form of the interevent time distribution D (e.g., Cox and Isham 1980, 
Daley and Vere-Jones 1988), 

0;))(1(1)(
>−= xxD

dx
xdF

μ
   (5) 

where μ is the mean interevent time and d the differential operator. 
In point processes Palm theory, the former equation is commonly known as Palm-
Khintchine equation (e.g., Cox and Isham 1980, Daley and Vere-Jones 1988). 

Let us note τ the random variable measuring the interevent time between two successive 
events and τ1 the time from an arbitrary origin to the first event (forward recurrence time). 
Then, if we note P the probability associated to the distributions D and F, Eq. 5 can be 
written equivalently in the following form, 

)(1))(1(1)( 1 xPxD
dx

xdP
>=−=

>
− τ

μμ
τ

 (6) 

If we assume that seismicity can be shared into a background and clustered components, 
both described by some corresponding independent processes, then a combination of the 
former equations for both components lead to the following interevent time probability 
density function (pdf) f, 

))(1))((1(2)()()()()( 11 xDxDxfxPxfxPxf DB

DB

DB

D

BD

B

−−+>+>=
μμ
μτ

μ
μτ

μ
μ  

           (7) 

where DB, fB, μB, τ1
B and DD, fD, μD, τ1

D are the cumulative distribution, the density, the 
mean interevent time and the forward recurrence time for the background and dependent 
seismicity components respectively. 

The derivation of Eq. 7 is developed in the Appendix. This equation, which is the 
culmination of the present work, defines a basic characteristic decomposition of EITD. It 
allows us in particular to calculate the pdf f explicitly, when models for background and 
clustered seismicity are substituted. 

Let us put, 

))(1))((1(2)(

)()(

)()(

1

1

xDxDxR

xPxw

xPxw

DB

DB

B

D

D

D

B

B

−−=

>=

>=

μμ
μ

τ
μ
μ

τ
μ
μ

  (8) 
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The former decomposition reads simply, 

)()()()()()( xRxfxwxfxwxf DDBB ++=   (9) 

So that the density of mixed interevent times is viewed as the weighted mixture of the 
background and clustered seismicity densities fB and fD plus a correction term R. For very 
small x values (x<<1), f can be approximated by, 

DB

D

D

B

B

xfxfxf
μμ
μ

μ
μ

μ
μ 2)()()( ++≈    (10) 

The calculation of the pdf f using the characteristic equation Eq. 7 requires the 
preliminary knowledge of distributions fB and fD. In this study, we assume dependent 
events to occur as a non homogeneous Poisson process, so that their interevent time 
distribution obeys the following PL (Utsu et al. 1995; Yakovlev et al. 2005; Shcherbakov 
et al. 2005, 2006) 

( ) p
D

cx
Kxf /12)( −+

=     (11) 

where K, c are constants and p the Omori-Utsu p-value. In empirical studies, typical c 
values are found to range between 0.5 to 20 hours (0.02 to 1day) (Utsu 1961; Reasenberg 
and Jones 1989, 1994; Utsu et al. 1995). In the following, this parameter is set to the 
interevent time cutoff τc = 0.2 used by Talbi and Yamazaki (2009), whereas p is supposed 
to vary between 1 and 1.5. 

The normalization of fD together with the calculation of DD, µD and P(τ1
D>x) are 

developed in the Appendix. For both seismicity components, these distributions and 
parameters are required to carry out the calculation of the mixed pdf f from Eq. 7. For 
background seismicity, DB, µB and P(τ1

B>x) take different forms according to the selected 
distribution fB (Appendix). 

In this study, the pdf f is examined for different hypothetical background 
distributions (exponential, Gamma and Weibull). The calculation of f is developed in the 
Appendix. The following analytic forms of the pdf f are found for Exponential, Gamma 
and Weibull background distributions respectively. 

Bxexxf μϕμ /)()( −=     (12) 

⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

+=
+

−−

αα
θμ

)(
1)(

)(
1)()()( 312

1
1 cx

xP
cx

xPexxPxf xk  (13) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

⎟
⎠
⎞

⎜
⎝
⎛ +Γ

=
+

−

α
θ

μθ
μ

12
)(

1 )(
1)(1)(

11

1)(
cx

xQexQ

k

xf
D

x k

  (14) 



 15

In the former equations α is linked to the Omori-Utsu p-value, α = 1-1/p, 0<α <1, 
whereas k and θ are the parameters of the Gamma and Weibull distributions in Eq. 13 and 
Eq. 14 respectively. The functions ϕ, Q1, Q2, Pi , i = 1, 2, 3 depend on the parameters of 
background and dependent events distributions as defined in the Appendix. The 
Exponential case considered in Eq. 12 is a special case of the Gamma case in Eq. 13 for 
k=1, so that only the distributions 13 and 14 are fitted to the data. The parameterization 
13-A33 defines a mixed distribution noted MixGamma(c,p,k,θ) which is illustrated for 
Japan in Fig. 7 with the parameters c = 0.2, p = 1.5, k = 0.2 and θ = 5.5. 
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It is characterized by a PL like decrease followed by a rapid drop at large interevent times. 
Although it succeeds to catch the overall shape of the distribution, some deviation is 
observed at all scales especially at the long time range tail where the theoretical fit fall 
down more rapidly than observed. The parameterization 14-A40 defines a mixed 
distribution noted MixWeibull(c,p,k,θ). This former is illustrated for Japan in Fig. 8 for c 
= 0.2, p = 1.5, k = 0.5 and θ = 0.7 (solid curve). The parameterization 14-A41 is also 
illustrated for K = 0.07, p = 1, k = 0.50 and θ = 0.70 and an upper interevent time cutoff 
τmax = 1000 (dotted curve). 

Fig. 7 EITDs fitted using the mixed 
Gamma model MixGamma (c,p,k,θ) 
corresponding to the parameterization 
13-A33, with c = 0.2, p = 1.5, k = 0.2 
and θ = 5.5. Deviation is observed at 
all scales especially at the up tail where 
the theoretical fit fall down more 
rapidly than observed. 
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The theoretical fit embraces quite well the observed structure of the distribution and 
succeeds to fit even the observed up tail with an acceptable deviation. To show the 
superiority of the mixed Weibull fit in Fig 8 comparing to the mixed Gamma fit in Fig 7, 
we plotted in Fig. 9 the residual mean squares ( )ττ zRMS >  for each model. These 
residuals were calculated for different standardized interevent time cutoffs z according to 
the following relation, 

( ) ( ) )(ˆ
1

2
qnffzRMS

n

i
ii −−=> ∑

=

ττ   (15) 

where if , if̂ , n, q are the observed frequency, the predicted or model frequency, the 
sample size and the number of free parameters in the considered model, respectively. In 
the former equation, q can be reduced to two for all models compared in Fig. 9. Indeed, c 
and p are found quite stable and can be assumed constant (c = 0.2 and p = 1.5) in the 
mixed Weibull and Gamma models, whereas the PL fit is found quite stable at large 
interevent times (Fig 9, 10 of Talbi and Yamazaki (2009)), so that only the first PL 
parameters (say c1 and p1) are considered. The free parameters k and θ in 13-A33 and 14-
A40 are found relatively close to the maximum likelihood estimates corresponding to the 
background distribution calculated using the declustered catalog. They can be assessed 
easily by minimizing the residuals in Eq 15. The PL free parameters c1 and p1 have been 
already estimated for Japan and southern California in Talbi and Yamazaki (2009). 

Fig. 8 EITDs for Japan, fitted using 
the mixed Weibull model 
MixWeibull(c,p,k,θ) corresponding 
to the parameterization 14-A40, with 
c = 0.2, p = 1.5, k = 0.5 and θ = 0.7 
(Solid curve). Dotted curve shows 
the fit corresponding to the 
parameterization 14-A41, with 
K=0.07, p=1, k=0.50 and θ=0.70 and 
τmax = 1000 
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Fig. 9 shows that the mixed Weibull model provides the best fit for standardized 
recurrence times z exceeding 0.3, comparing with the former mixed Gamma model in Fig. 
7 and the two PLs fit in Fig. 5a. The mixed Weibull model is especially superior at both 
short and long range tails of the distribution. 
Fig. 10a show the EITDs fit for southern California using our both mixed models, 
corresponding to the parameterization 14-A40, with c = 0.2, p = 1.5, k = 0.4 and θ = 0.7 
(Solid curve), and the parameterization 13-A33, with c = 0.2, p = 1.5, k = 0.2 and θ = 5.5 
(Dotted curve). The mixed Gamma model clearly deviates at long time ranges. Fig. 10b 
shows the residual mean squares corresponding to Fig. 10a, and those from the PL fit of 
Fig. 7a in Talbi and Yamazaki (2009). 

Fig. 9 Residual mean squares for 
Japan, calculated from Eq. 15 for 
normalized recurrence times 
ττ  greater than z. Because of 

the large difference in scales, the 
residuals for z≤1 and z>1 are 
separately plotted in (a) and (b), 
respectively. The mixed Gamma 
and mixed Weibull fits in Fig. 7 
and Fig. 8 (Solid curve), and the 
doubly power law fit in Fig. 5a, 
are compared. We can opt for the 
mixed Weibull model starting 
from about z = 0.3. 
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In this case, we can opt for our mixed Weibull model for z > 0.5, even if the mixed 
Gamma model is the best fit for z values between 0.2 and 0.4. Note that for z values 
exceeding 1, the mixed Weibull is preferred. The residuals for z > 1 are not shown here 
because the comparison at this range is clear from Fig 10a. Finally, in case of Turkey, the 
mixed Weibull model is the best fit on the whole range of z values, namely exceeding 0.1 
(Fig. 11a, b). As in the case of Japan, it is especially superior at both short and long range 
tails of the distribution (Fig. 11a, b). The power laws fit in this case is shown in Fig. 11c. 

Fig. 10 (a) EITDs for southern 
California, fitted using the mixed 
Weibull model MixWeibull(c,p,k,θ) 
corresponding to the 
parameterization 14-A40 with c = 
0.2, p = 1.5, k = 0.4 and θ = 0.7 
(Solid curve), and the mixed Gamma 
model MixGamma(c,p,k,θ) 
corresponding to the 
parameterization 13-A33, with c = 
0.2, p = 1.5, k = 0.2 and θ = 5.5 
(Dotted curve) (b) Residual mean 
squares for southern California 
calculated from Eq. 15 for 
normalized recurrence times ττ  
greater than z, corresponding to the 
mixed Gamma and the mixed 
Weibull fits in the former Fig. 10a, 
the doubly power law and the pure 
Weibull fits in Fig. 7a and Fig. 12a 
of Talbi and Yamazaki (2009) 
respectively. The mixed Weibull 
model performs well starting from 
about z = 0.5. 



 19

(a) 

10-2 10-1 100 101

10-4

10-3

10-2

10-1

100

101

102

τ /τ

τ D
( τ

 )

M≥3.5 1988-2004 R=50km
M≥4.5 1960-2004 R=100km
M≥5.5 1960-2004 R=200km
MixWeibull (0.2,1.5,0.5,0.6)
MixGamma (0.2,1.5,0.2,4.5)

 
(b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10-3

z

R
M

S
( τ

 >
z τ

 )

Mixed Weibull
Mixed Gamma
Power law

 

Fig. 11 (a) EITDs for Turkey, fitted 
using the mixed Weibull model 
MixWeibull(c,p,k,θ) corresponding to 
the parameterization 14-A40 with c = 
0.2, p = 1.5, k = 0.5 and θ = 0.6 (Solid 
curve), and the mixed Gamma model 
MixGamma(c,p,k,θ) corresponding to 
the parameterization 13-A33, with c = 
0.2, p = 1.5, k = 0.2 and θ = 4.5 
(Dotted curve). (b) Residual mean 
squares for Turkey calculated from Eq. 
15 for normalized recurrence times 
ττ  greater than z. The mixed 

Gamma and the mixed Weibull fits in 
Fig. 11a, and the doubly power law fit 
in Fig. 11c, are compared. The mixed 
Weibull model provides the best fit. (c) 
The doubly power law fit for EITDs in 
Turkey. 
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In conclusion, the former results elect generally the mixed Weibull model as the 
best fit for EITD in the studied regions. Furthermore, the selected model occurs with 
quite stable parameterization, namely with c = 0.2, p = 1.5, k and θ estimated roughly in 
the ranges 0.4-0.5 and 0.6-0.7, respectively. 

 

7 Conclusion 
We have proposed a general model to describe the statistics of interevent times, averaged 
over multiple regions. This work was motivated by our former study proposing a Weibull 
distribution to fit southern California data, alternatively to the power laws (Talbi and 
Yamazaki 2009). Our model succeeded to describe quite well seismicity in Japan, 
southern California and Turkey, as a mixture of clustered seismicity modeled by a non-
homogeneous Poisson process (inducing a power law interevent time distribution), and 
background seismicity with interevent times at best described by a stretched exponential 
(Weibull) distribution. This view shows that the classical description of earthquakes as 
mixture of background and dependent events can still account for and simply explain 
recent empirical observations of EITD. This conclusion is reached by a combination of 
analysis, which starts from the derivation of the so-called Palm equations for both 
seismicity components, to go to the combination of the derived equations in a single 
model, and end with the derivation of the analytic expression of the EITD for different 
hypothetical background distributions. 

In the preliminary analysis, a usual filtering of the JMA catalog using standard 
space-time windows showed that both power laws, observed at short and long time 
ranges, can be attributed to the observed correlation (or clustering) structure within the 
filtering windows. In particular, the scaling and the power laws of EITDs reflect the 
observed correlation between earthquakes in space and time, as captured by the standard 
declustering windowing algorithms. 
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These results suggest a careful interpretation of the apparent scaling of EITD. In 
particular, a power law at short time ranges and a stretched exponential tail at long time 
ranges can constitute a better alternative fit breaking the power law at long time range. 
Our model deserves further development and tests, in particular using an inverse 
Gaussian background distribution. 

 

Appendix 
A1. Characteristic decomposition of EITD 

Let us assume the seismicity shared into its background and clustered components both 
described by corresponding independent processes. In this case, the probability that the 
time to the next event from a fixed origin 0 exceeds a given time x > 0, say P(τ1>x), is the 
product of the probabilities for the two components, 

)()()( 111 xPxPxP DB >>=> τττ    (A1) 

where τ1
B and τ1

D are the forward recurrence times corresponding to background and 
clustered seismicity respectively. Let us apply the derivation operator to both sides of the 
former equation, 
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The derivatives in the former equation can be obtained from Eq. 6. Indeed, this former 
holds also for the background and clustered components as follows, 
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The substitution of the derivatives defined in Eqs. 6, A3 and A3’ into Eq. A2 yields, 
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where DB, μB, DD, and μD are the distribution and the mean interevent time of the 
background and dependent series of events, respectively. Finally, the following analytic 
expression of the distribution D is obtained, 
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The pdf f below follows by derivation, 
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In the former equation, fB and fD are the pdfs of the background and clustered seismicity 
components respectively. 

Replacing the derivatives A3, A3’ into Eq. A6, we finally get the characteristic 
decomposition of f as in Eq. 7, 

A2 Distribution of dependent events 

To normalize f D as a pdf, we distinguish two cases, p>1 and p=1.  

Case p>1 

In this case f D is normalized to, 
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with α =1-1/p, 0<α <1 

The corresponding cumulative distribution is, 
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The substitution of DD into Eq. A3’ and the integration of both sides of the equation 
between 0 and x yields, 
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Let us apply an upper cut off τmax>0 to account for temporal dependency and avoid an 
infinite mean. In this case, the mean µD of the former distribution is by definition, 
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Replacing fD from Eq. A7 we obtain, 
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The former integration can be performed using the following decomposition, 
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Finally, after a simple calculation we get the following mean value μD, 
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Case p=1 

This corresponds to the caseα=0 in which fD, DD and P(τ1
D>x) take the following forms, 
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Similarly to the former case, the mean µD is calculated after applying an upper cutoff τmax. 
In this case, the normalization condition for DD implies, 
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The former equation links τmax to the distribution parameters c and K as, 
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The mean µD is obtained from the following integration, 
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After a simple calculation, µD takes the following form, 

( )cccKcKD log)log1(max ++−= τμ   (A20) 

Finally, substituting τmax from Eq. A18, we get the following mean µD,  

)11( 1 KeKc K
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A3 Background events distribution 

In the following, the pdf f is examined for three hypothetical background distributions: 
Exponential, Gamma and Weibull. 

A3.1 Exponential background distribution 

This case corresponds to Poisson background occurrences with a mean μB and the 
following density and cumulative distributions, 
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BxB exD μ−−=1)(      (A23) 

The probability P(τ1
B>x) can be calculated by integration from Eq. A3, 

BxB exP μτ −=> )( 1      (A24) 

Case p>1 

In this case, f takes the analytic form in Eq. 12 after the substitution of Eqs. A7, A8, A9, 
A22, A23 and A24, into the characteristic decomposition 7. The function ϕ  is defined as, 
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with, 
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As suspected, for small x values (x<<1), f decreases as a PL with exponent 1+α, whereas 
it decreases rapidly for large x values (x>>1). Note that to allow a simple form of the pdf 
f, μD is not replaced here by its value from Eq. A13. However, in application, this former 
was used with a given upper cut off τmax. 

Case p=1 

After the substitution of Eqs. A14, A15, A16, A22, A23 and A24 into the characteristic 
decomposition 7, f is obtained as in Eq. 12 with a function ϕ, 
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Here, 
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Note that for simplicity μD obtained from Eq. A21 is not replaced here although it is used 
in application. 

A3.2 Gamma background distribution 

This choice is motivated by the view of the distribution as the sum of independent 
exponential components within each local sampling disk. The induced Gamma 
distribution has the following form, 
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The cumulative distribution DB follows by integration, 
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1),(  are the Gamma and the 
incomplete Gamma functions, respectively. Note that the former Exponential distribution 
Eq. A22 is embedded in the Gamma distribution Eq. A29 for k = 1. 

Using Eq. A3 and replacing the Gamma mean θμ kB =  we obtain the following 
probability for the forward recurrence time, 
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Case p>1 
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After the substitution of Eqs. A7, A8, A9, A29, A30 and A31 into Eq. 7, the pdf f takes 
the analytic form in Eq. 13. In this case, the functions P1, P2 and P3 are defined as follows, 
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Case p=1 

Similarly to the former case, f takes the analytic form in Eq. 13 after replacing Eqs. A14, 
A15, A16, A29, A30 and A31 in the characteristic decomposition 7. In this case, the 
functions P1, P2 and P3 become, 
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A3.3 Weibull background distribution 

Recently, the Weibull distribution (Weibull 1951) has been extensively used as a 
recurrence time model for large earthquakes (e.g. Newman et al. 2005; Yakovlev et al. 
2006; Turcotte et al. 2007; Zoller and Hainzl 2007). In addition, we showed that it 
presents the best fit for intermediate and long time ranges of southern California EITD 
(Talbi and Yamazaki 2009). These considerations motivated us to use it here as a model 
for background seismicity, especially to catch the proprieties of EITD at long time ranges. 

The Weibull distribution with parameters k, θ  takes the following form, 
( ) 0,,0;)( 1 >≥= −−− θθ θ kxexkxf

kxkkB   (A35) 

Its cumulative distribution writes, 
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The forward interevent time probability )( 1 xP B >τ  can be calculated from Eq. A3 by 
replacing the following mean of the Weibull distribution, 
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It follows that, 
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Where Jk,θ(x) is the following integral function, 
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Case p>1 

f takes the analytic form in Eq. 14 after replacing Eqs. A7, A8, A9, A35, A36 and A38 in 
the characteristic decomposition 7. The functions Q1 and Q1 are defined as follows, 
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Case p=1 

In the same way, f takes the analytic form in Eq. 14 after replacing Eqs. A14, A15, A16, 
A35, A36 and A38 in the characteristic decomposition 7. The functions Q1 and Q2 are 
defined as follows, 
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