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Abstract The stability of the power law scaling of earthquake recurrence time 
distribution in a given space-time window is investigated, taking into account the 
magnitude of completeness and the effective starting time of aftershock sequences in 
earthquake catalogs from Southern California and Japan. A new method is introduced for 
sampling at different distances from a network of target events. This method allows the 
recurrence times to be sampled many times on the same area. Two power laws with 
unknown exponents are assumed to govern short and long recurrence time ranges. This 
assumption is developed analytically and shown to imply simple correlation between 
these power laws. In practice, the results show that this correlation structure is not 
satisfied for short magnitude cutoffs (mc=2.5, 3.5, 4.5), and hence the recurrence time 
distribution departs from the power law scaling. The scaling parameters obtained from 
the stack of the distributions corresponding to different magnitude thresholds are quite 
different for different regions of study. It is also found that significantly different scaling 
parameters adjust the distribution for different magnitude thresholds. In particular, the 
power law exponents decrease when the magnitude cutoff increases, resulting in a slower 
decrease of the recurrence time distribution, especially for short time ranges. For example 
in the case of Japan, the exponent p2 of the power law scaling at large recurrence times 
follows roughly the relation: ;7.207.0)(2 +−= cc mmp 5.3≥cm , where mc is the 
magnitude cutoff. In case of Southern California, it is shown that Weibull distribution 
provides a better alternative fit to the data for moderate and large time scales. 

Keywords Recurrence times ⋅ Scaling⋅ Power laws ⋅ Universality ⋅ Magnitude of 
completeness. 

1 Introduction 
Quite recently, a new scaling law for earthquake recurrence time distribution, D, has been 
introduced and claimed to be universal for broad areas and different magnitude thresholds 
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(Bak et al. 2002; Christensen et al. 2002; Corral 2003, 2004a,b, 2007). The law we refer 
to in short as “Bak’s scaling law” consists of two power laws (PLs), one for short time 
ranges and the other for long time ranges. According to its authors, this law reveals a 
complex spatiotemporal organization of seismicity, which may be viewed as an 
intermittent flow of energy released within a self-organized (possibly critical) system. 
However, several authors argued on the robustness of such scaling on the whole time 
scale (Davidsen and Goltz 2004; Carbone et al. 2005; Lindman et al. 2005, 2006; 
Molchan 2005; Corral and Christensen 2006; Hainzl et al. 2006; Saichev and Sornette 
2006, 2007; Molchan and Kronrod 2007). In particular, Saichev and Sornette (2006, 2007) 
discussed quite well the distribution D in the framework of the epidemiological time 
aftershock sequence (ETAS) model (Ogata 1988) and showed that the so-called universal 
scaling law of interevent times does not strictly hold and can be well reproduced by the 
usual laws of seismicity (Gutenberg-Richter and Omori, essentially). In addition, Corral 
(2004a, 2007) found the evidence that the PL at short time ranges is not unique for all 
areas. 

It is noteworthy that the most of the previously cited studies dealing with this topic 
do not assess the magnitude of completeness explicitly, despite its importance in all 
quantitative studies based on earthquake catalogs. Besides, if we consider the data far 
below the effective starting times of aftershock sequences as in Bak et al. (2002), the 
interevent times issued from the whole catalog data (that may contain several aftershock 
sequences) are not complete and may lead to biased results (Kagan 2004; Helmstetter et 
al. 2006). Moreover, the precision (confidence intervals) of Bak’s scaling law exponents 
has never been estimated. To account for such deficiency, we may raise two main issues. 
The first one (T1) is the preliminary assessment of different magnitudes of completeness 
and minimum interevent time cutoffs for the data in use. The second (T2) is the 
estimation of the scaling parameters precision and the study of their sensitivity, relative to 
the performed cutoffs. These tasks are extremely difficult and time consuming because 
Bak’s scaling law involves the use of big data sets including catalogs from different 
regions and different magnitude scales. 

In this study, we aim to initiate the tasks T1 and T2 to discuss Bak’s scaling law. 
Namely, our objective is to study the sensitivity of Bak’s scaling law parameters when D 
is issued from different regions and calculated using different magnitude thresholds, with 
a particular care to its derivation from a reasonable cutoff at short interevent times and 
from the areas with sufficient information. We perform the process in three steps. First, 
different magnitudes of completeness for all available data sets are assessed and sampling 
strategy for interevent times is developed. Secondly, the tendency of the distribution of 
interevent times to PLs is empirically assessed and the PL exponents for different regions 
are estimated. Finally, the parameterization of the distribution D is analyzed under the 
hypothesis of a doubly PL behavior, with a particular focus on the case where the PL 
exponents vary with different magnitude cutoffs.  

As a result, a simple relation is established between short and long range PLs with 
parameters linked to the probability at the distribution tails. The PL parameter estimates 
obtained from the stack of the distributions corresponding to different magnitude 
thresholds are not stable for different regions of study. Moreover, significantly different 
scaling parameters fit the distribution for different magnitude thresholds. In particular, 
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the PL exponents tend to decrease with increasing magnitudes, resulting in a slower 
decrease of D, especially at short time ranges. 

Finally, it is worth mentioning that in our analysis no assumption of a specific 
seismicity model (such that the ETAS used by Saichev and Sornette (2006, 2007)) is 
made. Thus, the results described here are supposed to describe seismicity in a broad 
sense. 

2 Data and Methods 
Earthquake catalog data from Southern California and Japan were used in this analysis. 
For Southern California, we combined the catalog files for the period 1932-2005 from 
Southern California National Network (http://www.data.scec.org/ftp/catalogs/SCSN/), 
truncated at low magnitude thresholds (mc = 2.5, 3.5). For higher thresholds, the catalog 
(http://moho.ess.ucla.edu/~kagan/s_cal.dat) compiled by Kagan was used (Kagan et al. 
2006). The space window was considered as 32-37º N latitude and 114-122º W longitude 
(Fig. 1a). For Japan, the JMA catalog (The Seismological and Volcanological Bulletin for 
November 2005 (CD-ROM), Japan Meteorological Agency, JMA) for the period 1923-2005, 
and a compiled version of Utsu catalog (www5b.biglobe.ne.jp/~t-kamada/CBuilder/eqlist.htm) 
for the period 679-1922 were used with the space window 24-50º N latitude and 122-152º 
E longitude (Fig. 1b). 

(a) 

 

Fig. 1 Epicenter distribution 
map of earthquakes with 
magnitude greater or equal 
to 2.5 occurred in (a) 
Southern California within 
the period 1932-2005. (b) 
Japan within the period 679-
2005 as compiled from JMA 
and Utsu catalogs 
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(b) 

 

 

Completeness periods for different magnitude thresholds were calculated using the 
Stepp’s approach (Stepp 1971, 1972) as shown in Table 1. This method is briefly 
described in Appendix A, 
 

Table 1 
Seismicity models derived for Southern California and Japan and their estimated parameters. 
l
cm  is the magnitude threshold corresponding to the sampling scheme l, ( )l

cmMN ≥  denotes 

the number of events of magnitude greater or equal to l
cm . For each magnitude threshold l

cm , a 

sampling radius R for interevent times is considered, so that the parameters: P, l
cm , N and R 

define the sampling scheme l (see the sampling procedure ERS described later in Figure 4).
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Southern California 
Scheme l Time period P l

cm  ( )l
cmMNN ≥= R [km] 

1 
2 
3 

1990-2005 
1947-2005 
1932-2005 

2.5 
3.5 
4.7 

21257 
6006 
556 

50 
50 
50 

Japan 
Scheme l Time period P l

cm  ( )l
cmMNN ≥= R [km] 

1 
2 
3 
4 

1990-2005 
1975-2005 
1923-2005 
1890-2005

3.5 
4.5 
5.5 
6.5

37352 
11406 
3664 
590

50 
50 

100 
200 

 

For each data set, the logarithm of the cumulative event number was calculated for 
all the magnitude thresholds. To account for the error in the report of the magnitude M, 
the data were grouped in n magnitude classes [mi, mi+1] with a fixed width (Δm = mi+1-mi 
= 0.1; i = 1, 2, …, n). Then, the b-value was estimated using the least square method 
weighted with the number of events in each magnitude class. The following is the sum of 
Gutenberg-Richter residuals to be minimized, 

( )( ) ( )( )∑∑
= =

−−≥=
L

l
iil

n

i

l
i bmamMNw

1

2
10

1

2 logε   (1) 

( )
( ) Llni

mmN
mMmNw

l
cl

iill
i ,,2,1;,,2,1,1 KK ==

≥
<≤

= +  (2) 

where L is the number of magnitude cutoffs or schemes shown in Table 1, l
cm  is the 

cutoff magnitude corresponding to the scheme l, whereas ( )il mMN ≥  and 
( )1+<≤ iil mMmN  are respectively the number of events with magnitude greater or 

equal to mi and that with magnitude falling in the ith bin [mi, mi+1], counted in the scheme 
l. The weights l

iw  (i = 1, 2, …, n; l = 1, 2, …, L) were introduced to account for a 
contribution proportional to the number of events in each magnitude class. The 
corresponding Gutenberg-Richter distributions together with the estimated a and b values 
are shown in Figures 2. 
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In all the cases, the Gutenberg-Richter distribution is characterized by linear trend along 
several magnitude scales, showing that the corresponding catalogs are complete for the 
periods and the threshold magnitudes shown in Table 1. Departure above magnitude 5.5 
in Figure 2a denotes the existence of a second branch in the magnitude distribution of 
Southern California (Knopoff 2000). For comparison, the maximum likelihood estimates 
for unequal observation periods (Weichert 1980; Bender 1983) are also shown in Figure 
2b. The derived a and b values estimates in this case and those derived using the 
weighted least square method are quite equivalent. Finally, the periods of completeness 
shown in Table 1 were checked using the maximum curvature method (MAXC) (Wiemer 
and Wyss 2000). We used the standard parameter predefined in the Zmap free Matlab 
code that is a sample window size of 500, a binning of 0.1 and 200 bootstrap samples to 

Fig. 2 Fitted G-R distributions 
for different magnitude 
cutoffs in case of (a) Southern 
California and (b) Japan. awlse 
and bwlse are the Gutenberg 
Richter parameter estimates 
obtained using the weighted 
least square method and amle 
and bmle are those obtained 
using the maximum likelihood 
method 
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calculate uncertainties. The results summarized in Figure 3a, b show that our data can be 
considered complete above the magnitude of completeness and within the time periods 
selected in Table 1. 
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After assessing the magnitude of completeness, waiting times were sampled using the 
discretization method described in Appendix B and Figure 4 (Talbi and Yamazaki 2007). 
In the following, this procedure is referred to as “ERS(R)”, the abbreviation of 
“Earthquake Random Sampling with sampling radius R”. ERS(R) uses disks with fixed 
radius R (called sampling radius) to control sampling at a given distance around each 
event from a set of target events. An illustration of sampling disks obtained from two 
ERS runs for the case of Japan scheme 3 of Table 1 is shows in Figure 5. 

Fig. 3 Magnitude of completeness 
as function of time for (a) Japan 
and (b) Southern California, 
calculated using the maximum 
curvature method (MAXC). 
Dashed lines are the bootstrap 
errors limits 
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Fig. 4 Flowchart showing basic steps in the sampling algorithm, d is the Euclidian 
distance in IR2, the exponent c denotes the complementary set whereas card denotes the 
number of element in the set (cardinal number). ( )( ) mi

ix ,,1,0 K= , R and ( ){ } mi
i RxD ,,1,0
)( , K=  

are the target events, the sampling radius and the sampling disks, respectively 

Selecting an event x(0) at random from the catalog and choose a radius R. 

Constructing a sample of interevent times ( )
inj

i
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)( 2,
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=  occurring at a 

distance greater than 2R from the events x(0), x(1),…, x(i-1), x(i). 
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elseif card Ci(r) ≤1 
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 c
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d 

C
i(r

) >
1 

:  
i =

 i+
1 



 9

(a) 

 
(b) 

 
 

To describe Bak’s scaling law analytically, the recurrence times τ are scaled with 
the inverse of their mean τ1 . Then, the distribution is written as, 

( ) ( )ττφττ ≈D      (3) 

Fig. 5 ERS(100) strategy showing 
sampling disks with 100 km 
radius for scheme 3 of JMA data 
in Table 1. (a) and (b) correspond 
to two different runs. Only 
sampling disks containing more 
than 50 events are shown 
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where φ is the scaling (or the unified) law. Note that τ1  is basically the mean seismic 

rate τR  used by Corral (2003, 2004a). Indeed, consider the mixed sample ( )( ) mi

nj
i

j
i

,,1,0

,,1

K

K

=

=
τ , we 

have on one hand, 

( )∑∑

∑

= =

=− = m

i

n

j

i
j

m

i
i

i

n

0 1

01

τ
τ      (4) 

where m is the number of sampling disks, ni the number of recurrence times issued from 
the ith sampling disk and )(i

jτ  the jth recurrence time issued from the ith sampling disk. 

On the another hand, τR is written, 
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τ  (5) 

Since each target disk contains at least 50 recurrence times, the second term at the right 
hand of the former equation is at least 50 times less than the first one. Therefore, it is 
neglected, 

( ) ( )∑∑

∑

∑∑
= =

=

= =

≤ m

i

n

j

i
j

m

i
i

m

i

n

j

i
j

ii

n
m

0 1

0

0 1

50
1

ττ
   (6) 

Finally, we obtain the following approximation: 

( )∑∑

∑

= =

=≈ m

i

n

j

i
j

m

i
i

i

n
R

0 1

0

τ
τ     (7) 

From (4) and (7), it follows that, 

ττ R≈−1      (8) 

The main assumption we try to discuss here is the doubly PL behavior of D holding with 
a kink around the mean recurrence time τ , that is D scales as in (3) with 
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in which c1, c2, p1, p2>0 are the unknown PLs parameters and ε is a small positive 
constant. Note that to model the position of the kink between the two PLs which may be 
observed at different positions for different regions (Corral, 2004a, in his Figure 2), the 
analytic form of φ is not specified for [ [ετεττ +−∈ , . 

Since D is a probability density function (pdf), its sum over [ [∞+,0  should be 
equal to 1. This normalization condition leads, after some calculations, to the following 
characteristic approximation: 

1)(
11

2

2211
2

2

1

1 ≈⎟
⎠
⎞

⎜
⎝
⎛−+

−
+

− τ
εpcpc

p
c

p
c

  (10) 

The derivation of the expression (10) is developed in the Appendix C. For τε << , the 
first two terms in this expression prevail and we obtain, 

( ) 1
11

,,
2

2

1

1
2121 ≈

−
+

−
=

p
c

p
cppccψ   (11) 

This approximation describes the link between the PL exponent at short range p1 and the 
one at long range p2. Here, c1 and c2 are linked to the probability at the distribution tails. 
Indeed, from equations (C8) in the appendix C, it follows that ( )01 ττ ≤≈ Pc  with 

( ) 11
1

10 1 pp −−=ττ  and similarly from (C6) we deduce that ( )12 ττ >≈ Pc  with 

( ) 21
1

21 1 pp −−=ττ . Note that the approximation (11) could be derived simply from two 
PLs considered for the whole time scale with a fixed kink atτ . However, in the 

expression (10), the term 
2

2211 )( ⎟
⎠
⎞

⎜
⎝
⎛−
τ
εpcpc results from modeling more reasonable 

situation in which the kink is variable or difficult to locate. In addition, the approximation 
(11) provides a straightforward way for testing the stability of the scaling defined in (3, 9). 
Indeed, for a given set of the parameters c1, c2, p1 and p2, any significant deviation of the 
statistic ψ (c1, c2, p1, p2) from its theoretical value 1 will call for the rejection of the PL 
scaling defined in (3, 9). In the following section, the mean estimates of the parameters c1, 
c2, p1 and p2 are computed and discussed for different regions and different magnitude 
thresholds. Based on the obtained results, empirical estimates of ψ  are computed and 
used to discuss the scaling (3, 9). 



 12

3 Results and Discussion 
In their pioneering work, Bak et al. (2002) discarded empirically interevent times less 
than 40 seconds from their analysis to avoid missing events at short time scales. However, 
recent studies show that 40 seconds is not sufficient and many events are missed above 
this level. Indeed, the magnitude of completeness significantly increases after large 
events and many short-term events are missed from the catalog in the early part of the 
aftershock sequence at a level exceeding 40 seconds (Kagan 2004; Helmstetter et al. 
2006). For this reason and given that censuring a large portion of the data will lead to 
poor statistics, we adopted the conservative interevent time cutoff τc = 0.2 days obtained 
for m0 = 7.5 and mc = 3.5 from the following reversed version of the relation proposed by 
Helmstetter et al (2006). 

( )
75.0

5.4log 0
10

−−
= c

c

mmτ     (12) 

where τc is the recurrence time cutoff, m0 the mainshock magnitude and mc the threshold 
magnitude. 

Interevent times were sampled using ERS with the scheme parameters shown in 
Table 1. Note that the choice of R does not affect the shape of the distribution D (e.g., 
Figure 6) and that the radiuses in Table 1, has been selected to guarantee a sufficient 
number of events in each target disk. 

10-3 10-2 10-1 100 101 102
10-5

10-4

10-3

10-2

10-1

100

101

102

τ /τ

τ D
( τ

 )

M≥5.5 1923-2005 R=50km
M≥5.5 1923-2005 R=100km
M≥5.5 1923-2005 R=150km
M≥5.5 1923-2005 R=200km

 
We performed 1, 10, 50 and 100 ERS runs for magnitude thresholds mc = 2.5, 3.5, 

4.5(or 4.7) and 5.5, respectively. Sampling disks containing less than 50 events and 
interevent times below τc = 0.2 days were not considered in the analysis. The distribution 
D has been estimated for Southern California and Japan data using the usual binning 
technique (Bak et al. 2002). First, the distribution D was estimated for each magnitude 
threshold mc. Then, all the distributions were stacked together and fitted using the least 
square linear regression on the log-log scale. The cases 1<ττ  and 1>ττ were 

Fig. 6 Scaled interevent time 
distributions for mc = 5.5 obtained 
using ERS(R) with different 
sampling radiuses R = 50, 100, 
150, 200 km. 
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considered separately to estimate the first and the second PL, respectively. The resulting 
PLs explain more than 97% of the data dispersion in all the cases as shown in Figure 7. 

(a) 
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The solid lines shown on Figure 7 are the regression lines of the first and second PL. 
Dashed lines correspond to the 95% confidence limits from the confidence intervals of 
the regression parameters. 

The PL parameter estimates and their confidence intervals are summarized in 
Figure 8. The parameter estimates found by Corral (2004a, his Figure 2) for several 
regions in the world are also shown in the figure. Clearly, the first PL parameters, c1 and 
p1, are not stable since the rectangular areas I(c1)×I(p1) (where I(c1) is the confidence 
interval of c1 and I(p1) is that of p1) corresponding to Japan and Southern California in 
Figure 8 do not intersect. This is further confirmed from Corral’s results showing a 
critical estimate of p1 (around 1). On the other hand, the second PL parameters c2 and p2 

Fig. 7 Scaled interevent time 
distribution obtained using 
ERS(R) for (a) Southern 
California and (b) Japan. Solid 
lines show tendency to power law 
whereas dashed lines show the 
95% confidence limit of the linear 
least square adjustment 
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are largely variable and their estimates are located roughly near the borders of the 
intersection zone between the rectangular areas I(c2)×I(p2) (where I(c2) is the confidence 
interval of c2 and I(p2) is that of p2). Corral’s second PL estimate is located exactly on the 
border of the intersection zone I(c2)×I(p2) and is likely to be significantly different from 
the estimate for Japan. The situation can be clearer if the precision of Corral’s results 
(confidence limits) was given. Yet, in our study the confidence limits of the PL exponents 
are assessed for the first time. Discrepancies in the second PL are difficult to evaluate 
significantly and need more investigation because of the deficit of large interevent times. 
As a general note, we highlight the slower decay and the steeper one predicted for short 
and large time ranges respectively in case of Japan (Fig. 8). These arguments do not 
support a unique scaling law for all the regions, and hence we conclude that in general 
the scaling parameters are more likely to be dependent on the region of study. 
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To test the sensitivity of the PL parameters to different threshold magnitudes, their 

mean values for each magnitude scale were computed after several ERS runs. One 
hundred (100) ERS runs were performed for events exceeding magnitudes 2.5, 3.5, 4.5 
and 5.5, whereas for events exceeding the magnitude 6.5, 500 runs were carried out to 
achieve stable estimates of the PL parameters. These mean PL parameters were sorted in 
ascending order and their 95% confidence intervals estimated nonparametrically. For 
example, if )100()2()1( ,,, ppp K  is the ordered sample of p, the lower and upper 

confidence interval bounds of the mean value ∑
=

=
100

1100
1

i
ipp  are 2)( )6()5( pp +  and 

2)( )96()95( pp + , respectively. The obtained estimates are summarized in Figures 9 and 
10, together with their 95% confidence intervals. 

Fig. 8 Variation of the mean 
power law parameter estimates 
for different regions. c1 and c2 
are shown in the abscises 
whereas p1 and p2 are shown in 
the ordinates. Dashed lines are 
the 95% confidence rectangles 
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Fig. 9 Variation of the mean 
estimates of (a) p1 and (b) p2 for 
different magnitude thresholds. 
Linear trends are found for 1p  
in case of Southern California 
and 2p  in case of Japan. 
Dashed lines show the 95% 
confidence limits of the 
parameter estimates 
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In both cases, p1 decreases with increasing magnitudes from about 0.98 to 0.62. The 
decrease at short and intermediate magnitudes (mc=2.5, 3.5 and 4.5) is linear with a slope 
of about -0.12 followed by much slower decrease at large magnitudes (Fig. 9a). It follows 
that p1 is not unique for all the magnitude scales. On the other hand, p2, in most cases, 
slightly decreases with increasing magnitudes (Fig. 9b). Strikingly, the decrease in the 
case of Japan is roughly described by the following equation: 

5.3;7.207.0)(2 ≥+−= ccc mmmp    (13) 

The fluctuations of the parameters c1 and c2 for different magnitudes are summarized in 
Figures 10. c1 generally increases with increasing magnitudes (for moderate and large 
magnitudes). This trend may be explained by the decreasing number of events in the 
schemes with large magnitude cutoffs, thus resulting in a larger mean interevent time. 

Fig. 10 Variation of the mean 
estimates of (a) c1 and (b) c2 for 
different magnitude thresholds. 
c1 is generally increasing for 
intermediate and large 
magnitudes, whereas c2 is 
relatively stable. Dashed lines 
show the 95% confidence limits 
of the parameter estimates 
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Consequently, the distribution shifts to the left and the probability at the left tail increases. 
c2, which is supposed to decrease for the same reasons, shows quite stable estimates, 
around 0.30, because of the poor data around the upper tail (Fig. 10b). 

Because the approximation (11) is a necessary condition for the scaling defined in 
(3, 9) to hold, it was used to test an eventual departure from such scaling for different 
magnitudes. Mean estimates of ψ are shown for mc=3.5, 4.5, 5.5 and 6.5 in Figure 11. 
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The results corresponding to small magnitudes cutoff mc=2.5 were excluded because p1 
takes critical values close to 1 (Fig. 9a) and ψ is unstable. The confidence intervals are 
shown only for Japan because of the high fluctuations otherwise. Typically, this statistics 
is significantly greater than 1 for small magnitudes while it decreases to 1 with increasing 
magnitudes. Note that the consideration of the approximation (10) will not change the 
results. Indeed using the parameter estimates for different magnitudes shown in Figures 9 
and 10, we found in all the cases that, 

5.3;102)( 24
2

2211 ≥×≤⎟
⎠
⎞

⎜
⎝
⎛− −

cmpcpc ε
τ
ε

  (14) 

The upper bound in (14) is far below the deviation observed in Figure 11 for a large 
range of ε values. It follows that the scaling (3, 9) do not hold for small magnitudes as a 
result of the deviation between ψ and 1. Such deviation can be attributed to the high 
fluctuations in interevent times for small magnitude cutoffs. This conclusion reinforce the 
results by Saichev and Sornette (2007) showing that the PL scaling is broken by the 
Omori-Utsu clustering and do not hold strictly. 

Alternatively to the PL fit, the Southern California data set was fitted by a Weibull 
distribution (Weibull, 1951), defined by the probability distribution function: 

Fig. 11 Mean estimates of ψ  
for different magnitude 
thresholds. ψ is greater than 
one at small magnitudes while 
decreasing to one with 
increasing magnitudes 
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( ) 0;,; 1 >=
⎟
⎠
⎞

⎜
⎝
⎛−

−− ττλλτ λ
τ k

ekkf kk
W    (15) 

where k and λ are positive parameters. Weibull distribution attracts growing attention as a 
recurrence time model for large earthquakes (e.g. Newman et al. 2005; Yakovlev et al. 
2006; Turcotte et al. 2007; Zoller and Hainzl 2007). Figure 12a shows the corresponding 
fit with maximum likelihood estimates of the parameters k and λ together with the PLs of 
Figure7a. Comparing with PLs, this distribution provides a better fit for large recurrence 
times ττ ×> 3.0  (Fig. 12b), with a residual sum of squares ( )ττ 3.0>RSS  equal to 
7.7×10-4 against about 10-3 for the PL fit of Figure 7a. 
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Fig. 12 (a) Weibull distribution 
with parameters k = 0.11 and λ 
= 0.32 and the PLs of Figure 7a 
fitted to Southern California 
data. (b) Residual sum of 
squares ( )ττ zRSS >  for 
normalized recurrence times 
ττ  greater than z, correspon- 

ding to Weibull distribution in 
Figure 12a and the doubly 
power law fit in Figure 7a. 
Weibull distribution fits well 
the data starting from about 0.3 
standardized interevent time 



 19

4 Conclusion 
A robust estimation of the earthquake recurrence time distribution was carried out using a 
three step procedure. First, for the data set from Southern California and Japan, the 
magnitudes of completeness were assessed and a series of complete seismicity periods 
were selected. Then, a new sampling strategy for interevent times was applied to the data. 
Secondly, the distributions of the obtained interevent times were empirically assessed for 
tendency to PLs and their parameter for different regions were estimated. Finally, the 
parameterization of recurrence time distribution was discussed in two cases: when a 
doubly PL behavior is assumed, and in the case where PL parameters vary with different 
magnitude cutoffs. 

The corresponding results showed that PL parameter estimates and their 
fluctuations are not consistent with a unique universal behavior. Significantly different 
estimates were found to govern the scaling for different magnitude cutoffs in these 
regions. In particular, the exponents of the claimed PL scaling generally decrease with 
increasing magnitudes. Also, most PL parameters are different from one region to another 
when averaged over all magnitude scales in a given region. 

The hypothesis of a doubly PL scaling lead to a simple normalization condition that 
breaks for small magnitude thresholds, so that the scaling cannot hold for this magnitude 
range. It is also found that Weibull distribution fits the data quite well in case of Southern 
California, in particular for long time ranges where departure from the claimed PL 
scaling is difficult to evaluate. These results suggest that careful assessment of the 
magnitude of completeness and the interevent time cutoff should be taken into account 
before the interpretation of any empirical results concerning the recurrence time 
distribution. 

5 Appendix 
Appendix A: Stepp’s Approach (Stepp, 1971) 
This method is based on the assumption of a stationary rate of the declustered catalog. 
After intensive tests on both catalogs, we adopted Gardner and Knopoff (1974) approach 
with the standard windows for Southern California. It is found more simple and stable 
than other methods and its windows parameters suitable for removing large fluctuations 
of seismic activity in space and time. Next, consider the magnitude classes [mi, mi+1] with 
a fixed width (Δm = mi+1-mi = 1; i = 1, 2, …, I). In that case, each magnitude class is 
assumed to be an independent point process in time following an homogeneous Poisson 
distribution with a constant rate λ, 

k!
λek)P(T

kλ−

==     (A1) 

where T is the time period measured in years. For a time period T = n, if k1, k2, …, kn, are 
the mean number of earthquakes in each unit time interval of one year in the considered 
magnitude class. Then, an unbiased estimate of the mean rate of occurrence is given by: 
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T

k
k

T

i
i∑

=== 1λ̂     (A2) 

with a standard deviation 

( )
T
λσ =λ̂       (A3) 

Assuming a stationary process and thus a constant rate λ, ( )λ̂σ  behaves as
T
1

 for 

each magnitude class. Thus, its variation against time T is linear on a log-log scale; in 
particular it is made with a parallel to the reference line 

( )xy log
2
1

−= .    (A4)  

In practice, since recent time periods are more likely to be complete and with 
stationary rates, we start from the most recent time period of length ΔT (3 or 5 years for 
example) and step backward with a fixed lap ΔT, measuring for each T the standard 
deviation ( )λ̂σ . Figure 13 shows the plot of ( )λ̂σ  against T with the corresponding 
empirical adjustment, for Japan seismicity with magnitude m ∈[3.5, 4.5]. 
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Fig. 13 Variability of the occurrence 
rate σ(λ) for events with 
magnitude m∈[3.5 4.5], starting 
from the most recent period of length 
ΔT = 3 years, that is 2002-2005 and 
moving backward with a fixed step 
of (T(i) = iΔT). The linear adjustment 
explains quite well about five points. 
This corresponds to a period of 5ΔT 
= 15 years, so that 1990-2005 is the 
maximal period during which 
earthquakes have been reported with 
a constant rate and hence completely 
reported. 
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Appendix B: Earthquake Random Sampling 
Lets assume that earthquakes occur as a point process N in the three dimensional space of 
time-location (e.g., Cox and Isham, 1980; Daley and Vere-Jones, 1988), the magnitude 
and depth are disregarded for simplicity. Consider the occurrence of N on the metric 
space (E,d); where E is a subset of IR2 representing the set of epicenters identified by the 
pairs (longitude, latitude), and d the Euclidian distance in IR2. For a fixed real bound r>0, 
we construct a sub-process Ñ(r) from the process N as follows:  

1. ( )0X  is a random point of the process N. 

2. ( )1X  is the nearest neighbor of ( )0X  at a distance exceeding or equal to r from ( )0X   

i.e., 

( ) ( ) ( ){ }2)0()0()1()0( ,,;,min, IRNyryXdyXdXXd ⊂∈≥=   (B1) 

3. ( )2X  is the nearest neighbor of ( )1X  at a distance exceeding or equal to r from ( )0X  
and ( )1X  i.e., 

( ) ( ) ( )( ) ( )( ){ }210)1()2()1( ,,,;,min, IRNyrXDrXDyyXdXXd ⊂∈∪∉=  (B2) 

( )( )rXD ,0  and ( )( )rXD ,1  are the disks with radius r, centered on X(0) and X(1) 
respectively.  

( )3X ,
( )4X ,…,

( )2−iX ,
( )1−iX ,… are defined in a similar way. For example, 

( )1−iX is 
defined in the step i as follows: 

 i. ( )1−iX is the nearest neighbor of ( )2−iX  not belonging to the set of disks 
( )( ){ } 2,,1,0, −= ij

j rXD K (Figure 14). 

 

 

For a finite point process N, if the disk ( )( )rXD ,0  do not include all the points, the 
algorithm stop in the step m+2 with m≥0, for which the nearest neighbors of ( )mX  belong 
to the set of disks ( )( ){ } mj

j rXD ,,1,0, K= . The set of points constructed earlier (defining the 

sub-process Ñ(r)) are called r-target points. The set of disks ( )( ){ } mj
j rXD ,,1,0, K=  are called 

r-target disks. 

X(0) 

X(1) 

X(2)

r
E

Fig. 14 Schematic representation of target 
points construction. From all earthquake 
locations (balls), black balls are selected as 
target points. 
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The ERS procedure has been built on as a tool for the estimation of earthquake 
recurrence time distribution D in a given region. For this purpose, consider the set of r-
target points (x(i))i=0,1,…,m, then x(0) is a random epicenter corresponding to an event with 
magnitude m0. Interevent times are calculated for each disk ( )RxD i ,)(  centered on )(ix  

with radius R=r/2. Then, the m samples ( )( ) mi
inj

i
j ,,1,0;

,,1
K

K
=

=
τ  obtained are mixed 

together to estimate D. We note ERS(R) the Epicenter Random Sampling with sampling 
radius R. Note that resampling with ERS provides different interevent times in each run 
because of the randomly chosen starting target point x(0). 

 
Appendix C: Derivation of the approximation (10) 
The normalization condition for D reads, 

( ) 1
0

=∫
∞

dssD     (C1) 

In view of (3) and (9) and using the additive propriety of integration, the summation (C1) 
shares into, 

( ) ( ) ( ) ( )dssDdssDdssDdssD ∫∫∫∫
∞

+

+

−

−∞
++=

ετ

ετ

ετ

ετ

00
  (C2) 

Let’s note I1(D), I2(D) and I3(D) the first, the second and the third terms in the right hand 
of the equation (C2), respectively. Calculating these terms calls to the evaluation of D(s) 
for ετ −<< s0 , ετετ +<≤− s and ετ +≥s . Let’s consider first the case 
where ετ +≥s . From equations (3) and (9) we deduce that, 

( )
( ) 2

2
ps

c
sD

τ
τ ≈     (C3) 

Hence, 

( )
2

2 1
2

p

p

s
csD

−

≈
τ

    (C4) 

By summing both terms in the former equation over[ [∞+,s , we obtain, 

( ) du
u

c
duuD

s p

p

s ∫∫
∞+

−
∞+

≈
2

2 1
2τ   (C5) 

It follows that, 

( )
1

1
2

1
1

2

2

2

−
≈−

−
−

p
scsF

p
pττ    (C6) 
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with p2>1. τF is the cumulative probability distribution. I3(D) is calculated from equation 
(C6) by putting ετ +=s , 

( ) ( ) 22 11

2

2
3 )(

1
1 pp

p
cFDI −− +
−

≈+−= εττεττ   (C7) 

where p2>1. 

In the same way, for the case where ετ −<< s0 , summing D between 0 and ετ −  
yields, 

( )
1

1
1

1 1

1

1

p
scsF

p
p

−
≈

−
−ττ    (C8) 

with p1<1. I1(D) is obtained from the former approximation for ετ −=s , 

( ) ( ) 11 11

1

1
1 )(

1
pp

p
cFDI −− −
−

≈−= εττεττ   (C9) 

Finally we get from the summation of both hands in the approximations (C7) and (C9) 
that, 
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1
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On the other hand, if we suppose D slightly varying (relatively constant) within the 
interval ],[ ετετ +− , I2(D) could be approximated as follows, 

( ) ( ) ( )τε
ετ

ετ

DduuDDI ˆ22 ≈= ∫
+

−

   (C11) 

where ( )τD̂  is the mean value of the distribution between ετ −  and ετ + , that is, 

( )
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ετ

τ
ετ
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Suppose τε << , using the approximation, 

( ) xx αα +≈+ 11 ; { }0,0 −∈→ IRx α    (C13)  

we get, 
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( ) ⎟
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Finally, 

( ) ( ) ( )
2221121

1ˆ2
τ
ε

τ
τ pcpcccD −++=    (C14’) 

By substitution from (C14’) and (C11), we obtain I2(D), 

( ) ( ) ( )
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2211212 ⎟
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Again using the approximation (C13) for τε << , the expression (C10) could be written 
as, 
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Finally, from (C1), (C2), (C15) and (C16), and after a simple calculation, the expression 
(10) is obtained. 
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