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Abstract. This paper presents a multi-scale solution based on mathematical morphology 
for extracting the building features from remotely sensed elevation and spectral data. 
Elevation data are used as the primary data to delineate the structural information and are 
firstly represented on a morphological scale-space. The behaviors of elevation clusters 
across the scale-space are the cues for feature extraction. As a result, a complex structure 
can be extracted as a multi-part object in which each part is represented on a scale 
depending on its size. The building footprint is represented by the boundary of the largest 
part. Other object attributes include the area, height or number of stories. The spectral 
data is used as an additional source to remove vegetation and possibly classify the 
building roof material. Finally, the results can be stored in a multi-scale database 
introduced in this paper. The proposed solution is demonstrated using the data derived 
from a LiDAR (Light Detection And Ranging) surveying flight over Tokyo, Japan. The 
results show a reasonable match with reference data and prove the capability of the 
proposed approach in accommodation of diverse building shapes. Higher density LiDAR 
is expected to produce better accuracy in extraction, and more spectral sources are 
necessary for further classification of building roof material. It is also recommended that 
parallel processing should be implemented to reduce the computation time. 

Keywords: image analysis, mathematical morphology, information storage, remote 
sensing. 
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1 INTRODUCTION 
Building inventory databases provide essential information for earthquake damage 

assessment. Updating them may benefit from the extraction of building features from 
remotely sensed data, which has been progressively developed. Recent developments in 
feature extraction image analysis show the following typical tendencies: there has been a 
transition to 3D, object-oriented, hierarchical and multi-scale approaches are often used, 
and more attention has been given to object modeling (Baltsavias, 2004). These are the 
results of advances in computing technology and also the need to deal with an increasing 
number and variety of sensors. Extraction of building features in urban areas, as one of 
the focuses of interest, requires very high spatial-resolution images. Aerial images with 
three visible bands have been conventionally used as the unique data source. Recently, 
more spectral channels are added and space-borne sensors also provide comparably high 
spatial-resolution images. Additionally, the correlation of a stereo-pair of images is the 
conventional approach to derive the elevation data, known as a Digital Surface Model 
(DSM). Height information is a supplemental source for feature extraction. 

However, the level of automation in processing spectral images is very low (Brenner, 
2005) due to diverse spectral information. Derivation of 3D information from a pair of 
spectral images is even more complicated. Suveg and Vosselman (2005) recommended 
that fusion with other data sources could reduce the complexity of extraction and then 
reconstruction. Alternatively, the development of Light Detection And Ranging (LiDAR) 
technology (Baltsavias, 1999; Wehr and Lohr, 1999) introduces a better option to 
improve the level of automation. A LiDAR surveying flight provides dense LiDAR point 
clouds that present well the complex structure of building features along with a very 
high-spatial resolution image. Such dense point clouds used as the primary data can 
successfully delineate the building footprints and structures. Solely using LiDAR data or 
its fusion with other data sources has been the dominant trend of research and practice in 
feature extraction (Haala and Brenner 1999; Maas and Vosselman 1999; Rottensteiner 
and C. Briese 2003; Vosselman et al. 2005). 

To accommodate the complex scenes of urban areas, hierarchical and multi-scale 
approaches seem to offer promising solutions and recent research shows their more 
frequent use (Baltsavias, 2004). The work of Hofmann et al. (2002), Matikainen et al. 
(2001), and Vosselman et al. (2005) are typical examples of using a hierarchical bottom-
up approach. However, it is hard to find a suitable set of parameters to determine the 
homogeneous regions. Scale-space processing might offer a solution to mitigate the 
difficulty. Investigating the behavior of objects across scale-space reveals important clues 
to guide the splitting and merging of homogeneous regions. The fact is that objects 
presented in an image possess scale properties. Exploitation of scale in image processing 
mimics human perception. Human perception ignores the details and groups the pixels 
into an object at a specific scale of observation. 

The goal of this work is to construct a suitable scale-space processing framework for 
both extracting a building feature and storing it in a database. A specific (or generic) 
building model will not be used. Instead, by employing a multi-scale concept, a complex 
structure will be broken into several simple primitives across the scale-space and then 
easily re-linked in a multi-scale database. A brief description of area morphology 
(Vincent, 1992), which is employed to construct a nonlinear multi-scale scheme (Section 
3), is presented in Section 2. The proposed method is demonstrated in Section 4 using 
data from a LiDAR surveying flight, followed by the conclusion and discussion for 
further developments in Section 5. 

2 MORPHOLOGICAL SCALE-SPACE 
Linear scale-space has been well developed in feature extraction and visualization 

(Lindeberg, 1993). To overcome the distortion problem in a coarser scale by the linear 
scale-space, which generates difficulty in linking across the scale-space, the nonlinear 
scale-space was proposed. The nonlinear scale-space keeps the main properties of a scale-
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space like luminance conservation, geometry, or morphology (Petrovic, 2004). Generally, 
it performs a partition of an image into isolevel sets at each scale and links them with the 
closest one in the next scale. Our proposed method is based on the nonlinear scale-space 
employing area morphology (Vincent, 1992). The area morphology theory is as follows. 

Let x, y ∈ X; x and y are linked for X if there is a path from x to y in X. X is connected 
if any x and y in X are linked for X. Y is a connected component of X if Y ⊆ X, Y is 
connected, and Y = Z whenever Y ⊆Z ⊆X and Z is connected. 

The connected opening ( )xC X  of a set X ⊂ M, where M ⊆ R2 at point x ∈ M is the 

connected component of X containing x if x ∈ X and ∅ otherwise. 
Let X ⊂ M and s ≥ 0. The area opening of parameter s of X is given by 

( ) ( )( ){ }a
s xX x X Area C X sγ = ∈ ≥    (1) 

If {Xi} denotes the connected component of X, it comes up with    
    γ s

a (X) = U Xi | i ∈ I,Area(Xi) ≥ s{ }   (2) 
The binary area closing of parameter s (s ≥ 0) of X is then defined as 

φs
a (X) = γ s

a (XC )[ ]C ,    (3) 
                      where XC denotes the complement of X in M. 

Vincent (1992) then extended the definition of binary area opening or closing to 
grayscale area opening or closing. A grayscale image can be defined as a 
mapping f : M → R.  

The grayscale opening of f is given by 
(γ s

a ( f ))(x) =∨ h ≤ f (x) | x ∈ γ s
a (Th ( f )){ },  (4) 

where ∨ stands for supremum, i.e. a lowest upper bound, and Th is the threshold of f at 
value h: 

Th ( f ) = x ∈ M | f (x) ≥ h{ }.   (5) 
 
In other words, the thresholds of image M at all the possible values of h are firstly 

taken and the binary opening of each threshold set,γ s
a (Th ( f )) , is found. Subsequently, 

∨ is applied to all the recently foundγ s
a (Th ( f )) . It is similarly extended to grayscale 

closing by duality. Area morphological filtering does not depend on the shape of 
structural elements like classic morphological filtering. Therefore, it can effectively 
remove noise and simultaneously retain thin or elongated objects. 

Applying area opening followed by area closing with a parameter s (AOC operator) 
on an image is like flattening this image by parameter s. This performance segments an 
image into the flat zones of similar intensity or isolevel sets, in other words. Therefore, 
iteratively applying an AOC operator with increasing s can generate a scale-space. A 
scale-space can be generated with an infinite number of scales. For the discrete 
dimension of an image, the number of scales increases by one each time a window (area) 
size increases from one pixel to the image size. However, it is time-consuming to be 
concerned with all the area values. Since objects in a scene tend to group into a limited 
number of size ranges, several size values may be enough for scale-space object 
extraction. Horizontal and vertical granulometry analyses (Vincent, 1994) can be used to 
find the potential sizes contained in an image. Alternatively, in regards to extraction of 
building features in a built-up area, there are several ranges of building sizes defined in 
the construction regulations. These ranges of sizes can be used as the parameters.  

Let { } ,  1, 2,...is i = be the parameter set to generate the scale space. The AOC 

scale-space { }SP of an image M generated with{ }is is: 

 { } { }1( )  ( ( ) ,  1, 2,...,i i i i iSP M SP SP SP i Iφ γ −= = =   (6) 

 where SP0 = M, φi and γi is closing and opening with si 
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iSP , therefore, consists of the objects, e.g. building parts, tree, etc., greater than is . 
Fig. 1 illustrates three scales (s = 9, 300, and 1200) of the AOC performance on a 
grayscale image. The small details disappear in the coarse scales and an object can be 
formed in a specific scale depending on its size. For instance, a small house at the 
bottom-left of the image was fragmented into two objects in scale s = 9, it was totally 
formed when s = 300 and disappeared when s = 1200. 
 
Fig.1.  
 

Across the scale-space from a coarse scale to a fine scale, an object such as a 
building part follows the process of creation and split. Depending on the criteria based on 
several of its properties such as the height or spectral index, a newly created object might 
be a child of the current object that this new object falls into. Otherwise, the current scale 
is called the “root” scale of this object. An object can be extracted in its “root” scale. The 
links between objects across the scale-space are depicted in Fig. 2. Let us examine a 
three-scale-space such that S1 is the coarsest one and S3 is the finest one. In the current 
scale S2, there are two newly created objects named A and B. While A has similar 
properties to the bigger one in scale S1, B has different properties. As a result, B can be 
extracted in this scale S2 with its two-level tree and A is associated with its father in S1 
and two children in S3 to form a three-level tree. Those trees form a father-child 
relationship across the scale-space. 
 
Fig. 2. 

3 MULTI-SCALE IMAGE ANALYSIS 

3.1 Pre-processing 
This step transforms the elevation and spectral sources into a suitable format for the 

multi-scale analysis. The nDSM (normalized DSM), which is computed by taking the 
difference between the original DSM and the Digital Terrain Model (DTM), also called a 
bare-earth surface, is the first required input data. It represents the height of all overlying 
features such as buildings and trees on the 0 m flat terrain. An ortho-image which is often 
acquired simultaneously with the LiDAR point cloud on a surveying flight is the second 
input data. It is normally a 3 or 4-band image but there is no limit on the number of the 
multi-spectral bands. The required processing for the LiDAR point clouds and ortho-
image is described below.  

First, a LiDAR point cloud is interpolated into a grid format. The nearest neighbor 
interpolation method is employed here to preserve the sharp leap in elevation along the 
edges of buildings. The cell size is chosen as close as possible to the point density. The 
grid value now represents the elevation. Subsequently, we employed the wavelet-based 
clustering method (Vu and Tokunaga, 2004) to classify the LiDAR points into terrain and 
off-terrain points. Other classification methods can also be used here. The nDSM is then 
generated using the aforementioned method. Since we focus on building features, all the 
pixels lower than 2m in this nDSM are masked out. This is also to mitigate the possible 
errors caused by the LiDAR point classification. Instead of using the elevation value, 
there is a possibility to use the number of stories, which helps to simplify the building 
structure. The transformation from elevation value to the number of stories is simply 
implemented by an elevation slicing with the height of a story, about 2-3m, as the 
threshold.  

Second, the spectral information is prepared. To utilize the pulse intensity as the 
near-infrared band, the pulse intensity is interpolated into a separate grid with the same 
cell size as that of the nDSM. Due to the noisy pulse intensity (Vosselman, 2002), the 
bilinear or cubic-spline interpolation method is recommended to reduce noise. The ortho-
image is resampled into the nDSM spatial resolution, which is often coarser than the 
ortho-image resolution. The newly formed 4-band ortho-image will be used to spectrally 
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classify the objects. In feature extraction, the nDSM is used as primary data with the 
complement extracted from the spectral information. This is because the nDSM is able to 
better represent the building structures while the spectral information is diverse for the 
roofs of buildings. 

3.2 Building extraction 
The flowchart of the proposed scheme is depicted in Fig. 3. The processing is carried 

out separately for the height and spectral information prior to the final integration to 
develop the multi-scale database. 
 
Fig. 3. 
 

Regarding the height processing, a morphological scale-space is initially generated 
for the nDSM. As mentioned in Sec. 2, there are two possible ways to determine the scale 
parameter. It is noted that the finest scale and the coarsest scale are chosen corresponding 
to the smallest and the biggest buildings in the area, respectively. Subsequently, the 
father-child tree across the scale-space is constructed to prepare for the extraction. It is 
organized into two steps as described in the following paragraphs. 

First, on each scale, every cluster defined as a group of pixels having the same value, 
e.g. the number of stories, are assigned their ID number. Additionally, other attributes are 
also assigned such as H (number of stories), X0 and Y0 (the starting point), Xcen and 
Ycen (the center point), SCALE (the scale at which it exists) and AREA (its size). The 
scanning across the scale space from a finer to the next coarser scale is subsequently 
carried out to eliminate the possible duplicate clusters since the chosen scale parameters 
might not be able to cover all the object sizes. If there are two overlapping clusters named 
F on the finer scale and C on the coarser one, F will be removed when F and C have the 
same number of stories. Then, if the values of those F and C are different, but F’s area is 
approximately equal to C’s area, F is also eliminated. The decision is made based on a 
defined threshold. For instance, it can be 0.9 or 0.85 which means F’s area is larger than 
90% or 85% of C’s area. Second, the father-child tree is constructed across the scale-
space. The link will be made not only between two consecutive scales but amongst all the 
scales since a large building might comprise a few very small pieces on its roof. Based on 
the falling of a small object S on a fine scale into a larger object L on a coarser scale, the 
SUPID of this object S is the ID of L and SUPSCALE is the scale on which L exists. 
Therefore, an object whose SUPID equals 0 is in the “root” scale.   

Then a 4-band ortho-image is exploited to spectrally classify different types of 
objects. The main purpose is to remove the vegetation that might have a similar height as 
building features. Moreover, it is expected to further classify different roof materials. K-
mean clustering is chosen for its simplicity and robustness. The clustering is applied to 
the areas of higher-than-one-story defined by the nDSM. This is to ensure that the 
parking or open spaces, the streets, etc., which have similar spectral signatures as the 
ones of the building roofs, are excluded. Prior to this clustering, the area morphological 
operator is employed as a filtering operator. In this way, the small meaningless objects 
are removed and the diversity of spectral information is also reduced. The above-
implemented function for scale-space generation is used here with only one scale. This 
scale is the area that is a bit smaller than the smallest building. After clustering, the 
spectral indices of a defined number of classes are assigned. The corresponding 
information class such as vegetation, water, concrete, etc. to each spectral index is 
subsequently determined by the operator. 

Spectral blobs are then used to adjust the extent of the above extracted building 
objects. They are used to remove the possible vegetation close to a building, which was 
mistakenly connected to the building object. To do that, the extracted objects from nDSM 
containing a vegetation blob are picked up for investigation. For each of those objects, a 
buffer of one pixel is generated along its edges by morphological dilation. The vegetation 
blobs which intersect that buffer are marked with 0 if they are completely contained in 
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the buffer or with 1 if they are not. All the intersected pixels between a building object 
and its vegetation blob of mark 1 are removed. As a result, the building object has been 
reshaped. It is to be noted that the vegetation blobs of mark 0 will be automatically 
removed shortly as only relevant spectral blobs to building features are retained in the 
following step.  

Subsequently, all the spectral classes that are not related to building features such as 
vegetation and shadow are removed. The spectral index is assigned as the SPE (spectral 
information) attribute of the building as follows. On each scale, each extracted object 
from height data is crosschecked with the ones extracted from spectral data. Let Oi,k be 
the currently checked object, i.e. object i in scale k. If there is no extracted object from 
the spectral data within the boundary of Oi,k, Oi,k is removed from the database. 
Otherwise, the most frequently occurring of the spectral indices falling within the 
boundary of Oi,k  becomes the spectral attribute of Oi,k. This attribute is named Speindex 
in the building database. By setting a threshold about 40-60% in assessing the most 
frequently occurring spectral indices, the spectral blobs are then used to split a building if 
two different spectral classes are dominant in this part. 

It should be noted that the rather low density LiDAR point cloud might be unable to 
effectively represent all the cases in a complex urban scene. Thus, in scale-space analysis, 
the adjacent extracted objects may share the same “fake” father on the coarser scale if the 
separation between them is too narrow. To mitigate the error due to this problem, the new 
index StdDis is introduced, which stands for standard deviation of distance. Since all the 
extracted objects have their center coordinates, it is easy to compute the distances from 
the centers of all the children to the center of their father. The standard deviation of the 
distances’ distribution is the StdDis of the concerned “father”. If its StdDis is larger than a 
certain threshold, implying that its children are dispersed in it, this father is a “fake” 
father. This step is to check all the objects in their “root” scale that have more than two 
children since they have a high possibility of being “fake”, and is carried out prior to the 
conversion to vector format.  

Finally, the extracted buildings are converted to vector format for input to a building 
database. Raster-to-vector conversion includes the detection of building edges and the 
arrangement of edge vertices to construct a polygon. Then all the polygons are stored in a 
shapefile (*.shp). The zigzag extracted boundaries from raster data are adjusted by a 
simplification algorithm like Douglas and Peuker’s algorithm (Douglas and Peuker, 
1973). All the listed attributes above are also attached in the conversion. 

3.3 Multi-scale building database 
The multi-scale extraction scheme, on the one hand, simplifies the extraction and 

construction task. On the other hand, it guides the development of a multi-scale building 
database. The components of each building are separately stored in their scales. It can be 
easily linked through the father-child relationship, i.e. through SupID and Supscale 
attributes. Thus, a very complex structure can be stored as well as matched with an 
existing database by extracting only the father polygons. This idea is demonstrated 
through an example in Fig. 4. 
 
Fig. 4.  

4 TESTS AND RESULTS 

4.1 Data used 
In order to demonstrate the proposed method, data from a LiDAR surveying flight 

captured over a densely built-up area of Roppongi, Tokyo, Japan, was used. The average 
LiDAR point spacing was about 1 m. The point clouds then were interpolated to a 1 m 
resolution surface model (DSM). Since the method was developed for all kinds of 
elevation data sources that can represent a surface model (DSM), it uses only the first 
echo of the LiDAR hits. The laser pulse intensity was merged with the ortho-photo to be 
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used as a near-infrared channel in segmentation. The selected test site covered an area of 
900 x 650 m2. A true color ortho-photo with spatial resolution of 20 cm was also 
provided as shown in Fig. 5. In this area, there were many high-rise and complex 
structures interspersed in the areas of tightly standing small and low houses. As a close-
up shown in Fig. 5b, it is clear that it is extremely difficult to extract the building features 
solely from such an ortho-photo. 
 
Fig. 5. 

4.2 Results 
The processing followed the general flowchart depicted in Fig. 3. All the processing 

steps were implemented by IDL coding (http://www.ittvis.com). The routines built 
include LiDAR point classification (Vu and Tokunaga, 2004), scale-space generation, 
cross-scale link, spectral classification, cross-scale reconstruction and raster-to-vector 
conversion. The nDSM prepared for multi-scale fusion is shown in Fig. 6c. It was 
computed from the original DSM (Fig. 6a) and the filtered DTM (Fig. 6b). Fig. 7 
demonstrates the clustering of elevation blobs in the scale-space. The scale parameters 
shown in this figure were s = 50 (Fig. 7a), 200 (Fig. 7b), and 1000 (Fig. 7c). While the 
range from 50 to 200 pixels was suitable for most stand-alone houses and apartments, the 
range from 200 to 1000 pixels was suitable for commercial buildings. However, more 
intermediate s values like 100 and 500 pixels were also used to accommodate the 
building parts of various sizes.  Also, 15 classes were called as the input parameter for 
spectral classification. The classified results showed that the spectral class ids from 4 to 
15 were related to the building features. 
 
Fig. 6. 
Fig. 7. 
 

The result of the entire area placed on the filter DTM, where brighter color means 
higher elevation, is shown in Fig. 8. The extracted building polygons are represented 
according to their height and scales. Brighter color shows smaller buildings. It should be 
noted that the processing here ignored the objects lower than 2 m. Thus, the open spaces, 
parking lots, roads, etc. were mostly excluded. However, elevated highways could not be 
excluded.  
 
Fig. 8. 

4.3 Accuracy assessment and discussion 
The building footprints were manually digitized to use as the reference data. To be 

comparable, the manual digitization was carried out on the LiDAR-derived DSM and 
simultaneously crosschecked with a 1 m ortho-image. The ambiguity was solved by 
checking the existing GIS building database of Tokyo Metropolitan. Two very different 
areas were chosen for detailed comparison among the DSM, the reference data and the 
extracted results by the proposed method. The ortho-images of the selected areas are 
shown in Fig. 9. While the first area (Fig. 9a) is a complex area with diverse building 
types of various heights, the second one (Fig. 9b) is comprised of densely-built small 
houses with similar height. The difference is illustrated through the statistics of elevation 
points in Table 1. 
 
Fig. 9. 
Table 1 

 
Both areas were completely extracted as shown in Fig. 10 which depicts the overlay 

of extracted building boundaries on the original DSM. Visually, the extracted results are 
reasonably well-matched with the reference and the DSM. Scale-space analysis allows 
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the simple but good visualization of the building structures. Since the reference data was 
manually digitized, it seemed to be more generalized and larger than the extracted results, 
and vice versa, the extracted results represent more detailed structures. 

As shown by the reference data, there are 54 buildings in Area 1 and 60 buildings in 
Area 2. Visually checking, there was no commission error in both areas and no omission 
error in Area 1 whereas two very low houses were missed in Area 2. The main difference 
between the extracted results and their corresponding reference is the merging of two or 
more adjacent buildings, which have similar heights, into a bigger one. There are four 
cases in Area 1 and seven cases in Area 2. There is also a reverse case in Area 1 where 
the extracted results showed two buildings whereas the reference data claimed that they 
merged into one building. Object-based completeness and correctness were then 
measured to report the accuracy of extraction in a quantitative way as shown in Table 2. 
A set of criteria based on object orientation, shape and size was defined by an 
independent operator to judge whether an object were correctly extracted. The report 
confirmed that lower accuracy achieved in extraction of low and small houses in Area 2. 
It is expected that these errors could be reduced with a higher density LiDAR point cloud. 
 
Table 2 

 
Further quantitatively comparing in 2D, two shape similarity measures known as the 

relative arithmetic difference and the total relative shape dissimilarity (Henricsson and 
Balsavias, 1997) were employed as shown in Table 3. The average building sizes in Area 
1 and Area 2 are approximately 200 m2 and 76 m2 respectively. Thus, the absolute area 
differences of 30.64 m2 in Area 1 and 14.02 m2 in Area 2 are both around 17% as 
represented by the relative arithmetic difference value. This value presents the overall 
difference in area and does not show under-segmentation or over-segmentation errors. 
These errors are represented through “A not B” (under-segmentation) and “B not A” 
(over-segmentation). In both test areas, the under-segmentation is worse than the over-
segmentation. This confirms the earlier visual inspection proving that the reference data 
is more generalized. Total relative shape dissimilarity as a combination of under-
segmentation and over-segmentation indicators, therefore, can represent the total shape 
difference in the areas. Both areas show similar values of shape dissimilarity. Using the 
computed area values, pixel-based completeness and correctness assessments reported 
good accuracies in both areas (Table 3). 
 
Table 3 

 
The four spectral bands used in classification were further checked to see whether 

there is some cue for roof material classification. To do this, the roof material of 167 
buildings in the study area was collected by a field survey (Hasegawa 2005). The survey 
points were then matched to the extracted buildings by corresponding spatial location. 
The relationship between the spectral class ids and the roof material is illustrated in Fig. 
14. It seems that the roof material “metal” that dominates classes 10, 12, 13 and 15 can be 
clearly identified. In addition, classes 7 and 9 might represent the roof material “cement”. 
The other two roof materials “tile” and “slate” show an unclear relationship. The noisy 
pulse intensity and the rather low-density LiDAR point clouds influenced this result.  
 
Fig. 10. 
Fig. 11. 
Fig. 12. 

 
The approximate 1 m point spacing of LiDAR point clouds used was rather coarse 

for the test area. In some dense areas with low houses, it was unable to separate those 
houses. The ortho-image was in fact provided at 20 cm spatial resolution, but to use the 
pulse intensity, we had to use 1 m spatial resolution. The noisy pulse intensity played an 
important role in removal of vegetation but was inapplicable in classification of the roof 
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material. A point spacing of less than 50 cm and more spectral bands are recommended 
for a better-extracted result. In addition, a generalization rule should be applied to the 
buildings in “root” scale, i.e. the footprints, for a better match with the existing 2D GIS 
database. 

This study was initiated by the demand for faster development of building inventory 
techniques in Japan. Its goal, therefore, is different from the majority of research on the 
uses of LiDAR and image data, which focuses on 3D reconstruction for 3D city modeling 
and visualization. The scale-space solution has proved to be well-suited to the situation of 
many Japanese cities, especially for small objects on roofs as well as complex structures. 
This technique could therefore probably be successfully deployed in mapping other urban 
forms in, for example, European cities where each building stands at a distinguishable 
distance from the others. 

The multi-scale approach developed here is most comparable to a processing 
scheme developed by Hofman et al. (2002). The major difference is that Hofman’s 
approach relies on the eCognition software package, which perhaps limits room for 
improvement. Moreover, additional processing has to be developed to utilize the detected 
building outlines from eCoginition’s result for either developing a building database or 
3D building reconstruction. In contrast, the approach developed in this study is 
specifically designed for a 3D building database and the outcomes directly serve that 
ultimate goal. 

The test with data acquired over Tokyo has demonstrated the deployment of the 
proposed method for building extraction which is an important step for map updating as 
well as for developing an inventory database for disaster damage detection. Since scale-
space is generated based on the size of the objects, if an object of interest is 
distinguishable from the neighborhood then the approach would be applicable. Thus, if 
LiDAR data with a high density of points acquired over a forest area allows for the 
discrimination of separate tree crowns, this method could work well for applications in 
forest inventory. 

5 CONCLUSION  
A multi-scale scheme for building extraction was developed and demonstrated using 

the products of a LiDAR surveying flight. It is a fully automated approach making use of 
both spectral and elevation data. It can work well with any nDSM and spectral data 
sources. The multi-scale framework is not only the core for extraction but also for 
developing a building database. The multi-scale relational database is useful for storing a 
very complex structure and flexibly accessing matches with existing databases. Tests of 
this method using data captured over an area of Tokyo, Japan, gave good result in terms 
of completeness accuracy and the capability to accommodate diverse building types. 
However, higher density LiDAR data is recommended for use in such a dense area. More 
spectral information is required to run an automated derivation of the roof material. Since 
the processing runs on several scales, it seems logical that running time could be reduced 
using parallel processing. These two points will be explored in future work. 
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Table 1 Statistics of elevation points in the checked areas: the complex area (Area 1) and 
the area of densely-built small houses (Area 2) 

 Area 1 Area 2 
Mean (m) 38.32 32.89 
Min (m) 22.11 24.01 
Max (m) 77.67 53.06 
Standard Deviation (m) 9.81 4.71 

 
Table 2 Object-based completeness and correctness assessment of the complex area (Area 
1) and the area of densely-built small houses (Area 2) 

 Area 1 Area 2  
 Detected Reference Detected Reference 
Correctly 
extracted 

39 43 31 44 

Total objects 47 54 46 60 
 Correctness = 

82,98 % 
Completeness = 

79,63 % 
Correctness = 

67,39 % 
Completeness = 

73,33 % 
 
Table 3 Comparison of the extracted result (B) and the reference data (A) by shape 
similarity measurement and pixel-based completeness and correctness. 

Average value  Area 1 Area 2 
Absolute difference: |A – B| (m2) 30.64 14.02 
Difference between A and the intersection A∩B: A not B (m2) 32.49 17.42 
Difference between B and the intersection A∩B: B not A (m2) 8.89 5.76 
Relative arithmetic difference |A – B|/A (%) 17.12 17.26 
Total relative shape dissimilarity (A\B + B\A)/A (%) 20.77 29.10 
Pixel-based completeness A∩B / (A∩B + A\B) (%) 82.64 78.19 
Pixel-based correctness A∩B / (A∩B + B\A) (%) 96.65 91.94 

 
 

Fig. 1. Illustration of AOC performance with the change of parameter value s. 
Fig. 2. Demonstration of the cross-scale link. 
Fig. 3. General flowchart of the proposed multi-scale method. 
Fig. 4. Demonstration of the multi-scale database structure. 
Fig. 5. Ortho-image of the test area: (a) the whole area and (b) a close-up. 
Fig. 6. (a) Original DSM provided by a LiDAR surveying flight. (b) the filtered DTM and 
(c) the derived nDSM of the test area. 
Fig. 7. Illustration of object forming based on elevation across the scale-space from finer 
(a) to coarser scales (b) & (c). 
Fig. 8. Perspective view of the extracted result for the entire area. 
Fig. 9. Extracted ortho-images of two selected areas: (a) the complex area (Area 1) and 
(b) the area of densely-built small houses (Area 2). 
Fig. 10. Extracted results overlaid on the original DSM: (a) Area 1, (b) Area 2. 
Fig. 11. Extracted results overlaid on reference data: (a) Area 1 (b) Area 2. 
Fig. 12. The relationship between the roof material and the spectral classes; metal, slate 
cement, and tile. 

11



 
 
Fig.1 
 
 

 
Fig. 2 
 
 
 

 
Fig. 3 
 
 

12



 
Fig. 4 
 
 

 
Fig. 5 
 
 
 

 
Fig. 6 
 
 

 
Fig. 7 
 
 

13



 
Fig. 8 
 
 
 

 
Fig. 9 
 
 
 

 
Fig. 10 
 
 

14



 
Fig. 11 
 
 
 

 
Fig. 12 
 
 
 
 

15




