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A B S T R A C T

Remote sensing satellite imagery plays an important role in estimating collapsed buildings in the aftermath of a
large-scale disaster. However, some previous methodologies are restricted to using specific radar sensors. Others
methods, such as machine learning algorithms, require training data, which are extremely difficult to obtain
immediately after a disaster. This paper proposes a novel method to extract collapsed buildings based on the
integration of satellite imagery, the spatial distribution of a demand parameter, fragility functions, and a
geospatial building inventory. The proposed method is applicable regardless of the type of radar sensor and does
not require any training data. The method was applied to extract buildings that collapsed during the 2011 Great
East Japan Tsunami. The results showed that the proposed method is effective and consistent with the surveyed
building damage data.

1. Introduction

The extraction of infrastructure damage in the aftermath of a large-
scale disaster is critical for quick response measures such as relief dis-
tribution. Thus, the most accurate the estimation is, the better the de-
cisions will be during an emergency. Remote sensing technology, such
as optical and synthetic aperture radar (SAR) satellites, has been used
during several disasters to retrieve the extent of the damage. Basic
approaches rely on identifying changes between two images taken be-
fore and after a disaster event. These approaches are based on the as-
sumption that the changes are correlated with the effects of the
earthquake. The averaged pixel difference, correlation coefficient, and
coherence between a pair of images are parameters that are often used
to detect changes [1–4]. Here, the main challenge is to set a threshold
that properly separates the damaged and non-damaged areas.

According to the Union of Concerned Scientists [5], of 1459 sa-
tellites currently in orbit, there were 396 earth observation satellites on
December 31, 2016. This number of satellites indicates that the near
real-time monitoring of affected areas in the aftermath of a natural
disaster is becoming a reality. In fact, satellite imagery is currently
available within few days. For instance, the Open Data Program of
Digital Globe provides optical imagery of affected areas to support
disaster response [6]. Therefore, it is necessary to implement an ef-
fective methodology to detect damaged areas.

Several methods have been proposed in previous studies for the

extraction of damaged areas. A significant number of these methods
rely on change detection between a pair of satellite images. Liu et al. [1]
introduced a z factor to evaluate the changes between a pair of Ter-
raSAR-X intensity images. This factor is a linear combination of the
absolute value of the normalized difference of backscattering and the
correlation coefficient. Both parameters were calculated using a moving
window. Here, the changes were evaluated at the pixel- and building-
unit-levels using a threshold for the z factor. Gokon et al. [7] proposed a
damage function FRm in terms of a mean value of a correlation coeffi-
cient within an object Rm. Both methods, the z factor and FRm, showed
good agreement with the actual damage situation. However, it was later
pointed out that the methodologies need calibration when other types
of satellite sensor are used [8,3]. To overcome the limitations of using a
manual threshold, training samples have been used for calibration.
Wieland et al. [9] evaluated the Support Vector Machine (SVM) method
to detect the changes produced by earthquakes and tsunamis. In this
work, this method was identified as superior in terms of the multi-di-
mensional change feature space and the definition of a decision
boundary. Nevertheless, the main problem of using supervised classi-
fication techniques in damage detection is the need of training samples.
The most reliable sources of training data are field surveys; however, in
the aftermath of a disaster, the main effort is focused on relief dis-
tribution and first aid. In most cases, information regarding the damage
state to infrastructure is available after several weeks. Training data
from the visual inspection of optical images is sometimes used in the
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absence of survey data; however, these data introduce biases because
collapsed buildings without significant damage to the roof are difficult
to detect.

Other technologies are used to retrieve information related to the
intensity of the disaster. For instance, GNSS and strong motion net-
works are used to record the permanent ground deformation and
transient waves due to large earthquakes [10–12]. Areas inundated by
tsunamis can be estimated from numerical simulation [13] in near real-
time for early warning system purposes [14,15]. From now on, the term
engineering demand parameter (EDP) will refer to the intensity of the
natural hazard. Thus, EDP can represent the peak ground acceleration
for an earthquake event or the inundation depth for a tsunami event. If
the spatial distribution of EDP is available, it is possible to infer which
areas are more likely to experience damage to their infrastructure. A
product of risk analysis is a damage map of the affected areas in terms
of probabilities, where the spatial distribution of EDP is one input
[16–20]. Here, based on surveys of previous events and/or numerical
simulations, a relationship between the probability that an asset will
experience a certain level of damage and a certain level of the EDP is
often used. Such a relationship is often called a fragility curve. Thus, a
fragility curve gives the probability that an asset will reach or exceed
certain level of damage under a given level of EDP [21–24,13]. The
limitation of the use of fragility curves and the distribution of EDP for
damage detection is that this approach provides aggregate values in
terms of probabilities, that is, a percentage of building damage.
Therefore, it is not possible to obtain a damage map at the resolution of
a building unit.

In this study, a novel damage classification method is proposed.
Here, an integrated geospatial database that includes satellite imagery,
the spatial distribution of EDP, fragility curves, and a building in-
ventory is used to perform damage classification without the need for
training data. The next section describes the details of the methodology.
Then, the extraction of the collapsed buildings due to the 2011 Great
East Japan Tsunami are presented as a case study.

2. Principle of the method

The following method is an hybrid approach for mapping collapsed
buildings that combines fragility curves and change detection. The
method consists of finding the best function threshold of certain fea-
tures extracted from satellite images with the aim of detecting changes.
The main constraint in the definition of the threshold function is that
the spatial distribution of detected changes should be consistent with
the spatial distribution of EDP. That is, a greater ratio of change should
be detected in areas with large EDP; similarly, a low ratio of change
should be observed in areas with low EDP. To control the ratio of
change, a fragility function is used as reference. A number of fragility
functions for diverse hazards have been proposed in previous studies.
The key principle of the proposed method is illustrated in Fig. 1, and the
steps are as follows.

1. Input the satellite imagery and the building inventory. Here, the
satellite imagery is inserted into the system for further analysis. For
the purpose of change detection, pre-event and a post-event satellite
images should be inserted. Recall that the images must be ready for
use. That is, it is implied that pre-processing has been performed.
For instance, synthetic aperture radar (SAR) images require cali-
bration, speckle filtering and terrain correction. Furthermore, the
geographical location of the buildings is also required.

2. Feature extraction. In this step, a first database is prepared. The
features used for detecting changes in the satellite imagery at the
location of the buildings are calculated. For SAR images, common
features used to detect changes are the differences in pixel values,
correlation coefficients, and the coherence between the pre- and
post-event imagery. The constructed database consists of a matrix in
which each row represents a building measurement. The first

column contains the building code, and the remaining columns
contain the extracted features.

3. Function threshold candidate. The main purpose of this method is to
define a threshold function T that will be used as a decision
boundary to infer whether a building exhibits changes. Fig. 1 shows
a two-dimensional database example where the threshold function is
a line. The optimal threshold function is defined within an iterative
process under the constraint explained in the following steps. Using
the function threshold, each building will be classified as either
changed or non-changed.

4. Inventory of change detected and EDP. In this step a second data-
base is prepared in which two sets of information are stored for each
building: (1) the change classification based on a candidate
threshold function and (2) the edp. edp denotes a particular reali-
zation of EDP. Note that at this step, the spatial distribution of EDP
is inserted to the system.

5. Calculation of the cost function. From the second database, the
classified buildings are grouped into bins by ranges of EDP. For each
bin, the ratio of buildings classified as changed (cr) and the bin-
average EDP are calculated. Then, the level of matching between the
cr values and the fragility function F are measured by calculating the
cost function C:

∑= −C cr F( )
i

N

i i
2

b

(1)

where Nb denotes the number of bins. cri denotes the ratio of
buildings classified as changed for bin i. Fi denotes the failure
probability for the i-th bin-averaged EDP calculated from the fra-
gility function.

The optimal threshold function is that which yields the minimum value
of C, which can be found from an iterative optimization process. Thus,
steps 3–5 are continuously repeated within a loop until the optimal
threshold function is found. Note that although the extraction of edp for
each building is shown in step 4, this task is performed once because it
is independent of the threshold function.

3. Experimental result and analysis

3.1. Case study and dataset

To demonstrate the performance of the method, the 2011 Great East
Japan Tsunami event was selected as a case study. A Mw 9.0 earth-
quake occurred on March 11, 2011 off the Pacific Coast of Japan. This
event was an interplate earthquake associated with the subduction of
the Pacific plate beneath the North American plate at the Japan Trench.
The event produced an extensive coseismic slip that generated a huge
tsunami. The east coast was severely affected with more than 400,000
damaged buildings.

Fig. 2 shows a pair of TerraSAR-X images of the coastal zone of
Tohoku, Japan. The images were taken on October 21, 2010 (pre-event)
and March 13, 2011 (post-event). Both images were captured with HH
polarization in a descending path and with the same incident angle
(37.3) at the center. The images were acquired in StripMap mode. After
an orthorectification, the images were resampled to a resolution of
1.25m. Then, the images were transformed to a sigma naught (σ0)
value, and an enhanced Lee filter with window size 3×3 was applied.
Further information about the TerraSAR-X images can be found in [1].

Fig. 3 depicts the spatial distribution of the inundation depth and a
survey of building damage levels within the affected area. Both of these
informations were provided by the Ministry of Land, Infrastructure and
Transportation (MLIT). The inundation depth information had a re-
solution of 100m, and the maximum inundation depth within the study
areas was 21.8m. In this case study, the inundation depth represents
the EDP. The damage states of the affected buildings were classified
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into 7 categories, the descriptions of which are shown in Table 1. The
surveyed building damage inventory is used as a ground truth data to
compare the results of the proposed method. Due to resolution limita-
tions, SAR imagery cannot detect minor damage such as cracks or even

the failure of certain structural elements. Thus, the damage states was
merged to represent collapsed and non-collapsed buildings.

Fig. 1. Schematic illustration of the flowchart of the proposed method.

Fig. 2. (a) Pre-event TSX image taken on October 21, 2010. The inset shows the location of the study area (rectangle mark) and the epicenter of the earthquake (star
mark); (b) Post-event TSX image taken on March 13, 2011.
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3.2. Fragility functions

The fragility function used in the methodology must be consistent
with the concerned disaster event. Thus, in this study, two fragility
functions constructed for tsunami events are tested. The first fragility
function was proposed by Koshimura et al. [13]. The fragility function
was constructed from the numerical modeling of tsunami inundation
and a surveyed building damage inventory obtained from Banda Aceh,
Indonesia. In this study, a normal cumulative distribution function (Φ)
was proposed:

= ⎛
⎝

− ⎞
⎠

F edp Φ
edp

( )
2.99

1.12 (2)

The second fragility function tested in this study was proposed by
Suppasri et al. [23]. In this study, a surveyed building damage in-
ventory from the 2011 Great East Japan Tsunami event was used. A rich
building damage inventory from the all tsunami affected areas was
available. Several sets of fragility functions were constructed according
to building material. Each set consists of 6 fragility functions for the 7

damage levels shown in Table 1. Here, we used the fragility function for
damage level 6 from the set constructed from the all buildings (i.e., no
distinction of the building material). Unlike Koshimura et al. [13], a
lognormal cumulative distribution function was proposed in this study:

= ⎛
⎝

− ⎞
⎠

F edp Φ
edp

( )
ln 1.2244

0.5723 (3)

In order to evaluate the effect of the fragility function in the results, a
linear function and a logistic function were tested as fragility functions
as well:

=F edp
edp

edp
( )

m (4)

=
+ − −F edp

e
( ) 1

1 k edp edp( 0.5 )m (5)

where edpm is the lowest edp that produces a 100% probability of da-
mage for the linear function. For the logistic function, edpm is twice the
edp that produces a 50% probability of damage, and k is the steepness of
the curve.

3.3. Detection of collapsed buildings

Two features were extracted from the pair of SAR images: the dif-
ference in backscattering d and the correlation coefficient r. Both fea-
tures were constructed for each building. The features were constructed
using the backscattering coefficient located within a rectangular box,
which was constructed as follows: First, a polygon P that encloses the
building footprint within a specified distance is created. In this study, a
distance of 5m was used. This process is commonly called buffering in
geospatial analysis. Then, the rectangular box is defined as the smallest
bounding rectangle that contains the polygon P. The reason for using an

Fig. 3. (a) Inundation map caused by the tsunami; (b) Spatial distribution of the buildings damage surveyed by the MLIT (DS: damage state).

Table 1
Damage state levels and their description.

Damage level Classification

0 No presence of damage
1 Minor damage
2 Moderate damage
3 Major damage
4 Complete damage
5 Collapsed
6 Washed away
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extended building footprint is the nature of SAR images. SAR systems
have a side-looking imaging geometry, and thus, this feature causes
effects outside the building footprint such as shadows for areas hidden
from the radar illumination and layover due to double bouncing and
scattering of building walls and roofs. It has been indicated that sha-
dowing and layover are affected if the building is damaged [25]. The
features d and r are calculated as follows:

∑= −
d

d
max N

Ia Ib1
(| |)

1 ( )i
i j

N

j j

i
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where the index i refers to the i-th building; the index j refers to the j-th
pixel within the rectangular box of building i; Ia and Ib are the back-
scattering coefficient of the post- and the pre-event SAR images, re-
spectively; and Ni denotes the number of pixels within the rectangular
box of building i. d is a vector that contains the di of all buildings. Note
that the term dmax (| |) in Eq. (6) is applied to scale this feature within
the range [−1,1]. That is, first, di is calculated when neglecting the

Fig. 4. Scatter plot of correlation coefficient (r) vs normalized difference of backscattering (d). (a) The complete dataset; (b)–(h) Separated by different damage state
(DS) according to MLIT. The solid, dotted, dashed and dash-dotted lines in (b)–(h) depict the calibrated linear thresholds resulting from the methodology.
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referred term. Then, the values are scaled by dividing the maximum
value of d| |i . Fig. 4a shows a scatter plot of the complete bi-dimensional
feature database. Fig. 4b–h show the same data separated by building
damage state according to MLIT. The color mark depicts the point
density, and the lightest color shows the highest density. The clustering
of marks tends to move to a large value of r and a value of d of zero

when the damage state decreases. However, there is clear overlap be-
tween the collapsed buildings (DS6) and the other buildings (DS0–DS5).

In this study, a linear threshold function was used and is defined by
the slope angle α and its distance to the origin of coordinates m. For
instance, Fig. 4(a) shows a set of threshold candidates with = −α 45 and
m at intervals of 0.2. Therefore, in this case study the cost function

Fig. 5. Cost function calculated using different fragility functions. (a) Koshimura et al. [13]; (b) Suppasri et al. [23]; (c) Linear; (d) Logistic.

Fig. 6. Ratio of collapsed buildings vs the inundation depth obtained from the results (dark marks) and fragility function used for the calibration of the threshold
function (solid line).
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depends of two variables. The cost function was calculated from a grid
search approach. The colormap shown in Fig. 5 depicts the cost func-
tion for a range values of α and m. The parameters that yielded the
minimum cost function using the four fragility functions (Eqs. (2)–(5))
are also shown. The result using Koshimura et al. [13]'s fragility func-
tion ( = −α 42.5, =m 0.35) and the logistic function ( = −α 45.0,

=m 0.30) are very similar. Fig. 6 shows the change ratio for different
levels of inundation depth resulting from the optimal threshold func-
tion. The fragility function used during the methodology is shown as a
solid line as well. As can be observed, the methodology found the
parameters α and m that best fit the fragility functions. Fig. 7 shows the
scatter plot of the binary classification, collapsed and non-collapsed
buildings, using the threshold function as the decision boundary. At
first glance, it seems that the methodology is not working properly
because of the differences between the threshold functions. It seems
that the linear thresholds resulting from Suppasri et al. [23] and the
linear function (Figs. 7b and 7c) cover a larger region of non-collapsed
buildings compared with the results using Koshimura et al. [13] and the
logistic function (Figs. 7a and 7d). However, the common regions for
collapsed and non-collapsed building from the four results are the re-
gions in which the majority of the data is concentrated. This pattern is
confirmed in Fig. 4b–h, in which the final linear thresholds are shown
together with features separates by damage states. Buildings with da-
mage states 0–4 are well classified as non-collapsed by the four fragility
curves. Similarly, the main portion of buildings with a damage state of
6 are classified as collapsed buildings. The main discrepancies are ob-
served in buildings with DS5, the majority of which are classified as
non-collapsed. Fig. 8 shows a closer look at the collapsed building map
from the surveyed data and that estimated by the proposed method. A
good agreement between these data is observed.

3.4. Accuracy assessment

The verification of our estimations was performed by comparing
them with the surveyed building damage inventory provided by the
MLIT. Tables 2–5 summarizes the comparison of our estimations and

the ground truth data. Here typical scores, such as overall accuracy,
user accuracy and producer accuracy, are calculated for the evaluation.
Overall accuracy (OA) is the ratio between the number of samples
correctly classified and the total number of samples. For a given class,
let say I, the user accuracy (UA) is the ratio of the number of samples
correctly classified as I to the number of samples classified as I. The
producer accuracy (PA) is the ratio of samples correctly classified as I to
the number of samples that truly belongs to class I. As mentioned be-
fore, the ground truth data provides a great amount of detail with 7
damage states, DS0–DS6; however, our method performs a binary
classification: collapsed and non-collapsed buildings. Therefore, for
accuracy evaluation, DS0–DS5 were merged to one group: non-col-
lapsed buildings. When the method was applied using Koshimura et al.
[13]'s fragility function, the OA was 81.4%, with a PA of 92.7% and UA
of 61.2% for collapsed buildings. When the method was applied using
Suppasri et al. [23]'s fragility function, the OA was 84.9% with a PA of
81.8% and UA of 69.8% for collapsed buildings. When the method was
applied using a linear fragility function, the OA was 80.8% with a PA of
80% and UA of 62.4% for collapsed buildings. When the method was
applied using a logistic fragility function, the OA was 85.5% with a PA
of 87.7% and UA of 69.2% for collapsed buildings. The Cohen's kappa
coefficient was 0.60, 0.64, 0.56, and 0.67 for the results using the ap-
proaches in Koshimura et al. [13], and Suppasri et al. [23] and the
linear and logistic functions, respectively (Table 6).

A notable difference between PA and UA is observed. Tables 2–5
also show the errors of non-collapsed buildings separated by different
damage states (DS0–DS5). Buildings classified as DS5 show the highest
error, which is the main cause of the low UA.

4. Discussion

Regarding the calculation of the features, using a bigger region than
the footprint, two issues were solved: First, the inclusion of the layover
and shadowing information. As mentioned before, because of the side-
looking nature of SAR, a building produces layover effects outside the
building and in the direction of the SAR sensor; furthermore, shadowing

Fig. 7. Scatter plot of collapsed (dark dots) and non-collapsed buildings (white dots) according to the final threshold function.
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is produced in the opposite side. Liu et al. [1] considered the effect of
layover by shifting certain values in the footprint database towards the
direction of the sensor. In this paper, however, it was decided to con-
sider both the layover and the shadowing effects by increasing the
building footprint. The second issue was the discrepancy between the
location of the buildings in the vector database and that in the SAR
images. It was found that these locations were not a perfect match.
Thus, by increasing the footprint, the backscattering of the complete

building would be included. The main drawback in increasing the
building footprint is that it might include fractions of neighboring
buildings. However, the calculated features d and r represent an ag-
gregate value of the rectangular box used for their calculations, and
thus, it should not affect the results significantly. This assumption is
verified in the scatter plot of Fig. 4, in which the collapsed and non-
collapsed buildings tend to be grouped in different regions.

Moreover, a significant misclassification of buildings as DS5 was

Fig. 8. Closer look at collapsed buildings map. Left column corresponds to region (i), and right column corresponds to region (ii); both are shown in Fig. 3b.
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also observed, which was the main cause of the low UA. Perhaps the
main reason for this misclassification is the definition of DS5. According
to Suppasri et al. [23], DS5 is classified as collapsed. However, the de-
scription was “Destructive to walls (more than half of wall density) and
several columns (bend or destroyed)” and the condition was “Loss of
functionality (system collapse). Non-reparable or great cost for retrofitting”.
This definition is considered from the perspective of a structural en-
gineer. Structurally speaking, a collapsed buildings refers to a building
for which the structural system has been severely compromised; how-
ever, it can still be standing up. According to FEMA 356 [26], a wooden
building is considered collapsed when the story drift is greater than 3%.
Thus, for a wooden house of 2 stories at 4m each, the minimum drift to
be considered collapsed is 2×3%×4m=24 cm. However, recall that
the resolution of the SAR imagery used in this study was 1.25m. This
fact reflects the limitations of the sensor rather than limitations of the
methodology. Therefore, the majority of DS5 buildings will not be de-
tected by SAR images; however, buildings with significant distortions
might produce enough changes in the backscattering to be classified as
collapsed. On the other hand, DS6 buildings are classified as “Washed
away”, the definition of which is “Washed away, only foundation remains,
totally overturned” and the condition is “Non-repairable, requires total
reconstruction”. Collapsed buildings with these characteristics are

certainly detected by SAR imagery. Thus, we believe that our results are
consistent with the surveyed dataset.

With respect to the methodology. In this study, the parameters of
the threshold function (α and m) were found from a grid search (Fig. 5).
Although it was not an efficient procedure, it did not require much
computational effort considering the two-dimensional case. A grid
search provides information regarding the shape of the cost function. In
the case study, the cost function showed a convex shape independent of
the fragility function used. The proposed methodology can be modified
for databases with more than 2 features. For instance, in cases where
SAR imagery from different sensors is available, such as the X-band
from TerraSAR, C-band from Sentinel-1, L-band from ALOS-2, the di-
mensionality of the dataset will increase significantly. In this case, a
better algorithm for finding the minimum cost function should be used.

The methodology was designed for binary classifications. However,
intermediate damage states can be estimated by the subsequent appli-
cation of the proposed method. For instance, for three levels of damage,
say severe, moderate and non-damage, the method is applied first to
identify the buildings with severe damage; then the method is applied
again in the buildings without severe damage to identify buildings with
moderate damage and buildings without damage. Fragility curves for
severe and moderate damage is required for this purpose. In practice,
the applicability of the method to identify intermediate level of damage
is limited by the resolution of the satellite images. As mentioned before,
the TerraSAR-X images used in the case study have a resolution of
1.25m; and thus, it is not possible to detect cracks or distortions in the
buildings.

One issue regarding the case study is the assumption that the tsu-
nami event was the dominant event compared with the ground motion

Table 2
Accuracy of damage detection using Koshimura et al.'s reference function.

DS0 DS1 DS2 DS3 DS4 DS5 DS0–DS5 DS6 Total UA

NC 1646 2184 5640 4738 1147 1905 17,260 643 17,903 96.4
C 211 394 1009 1282 548 1727 5171 8161 13,332 61.2
Total 1857 2578 6649 6020 1695 3632 22,431 8804 31,235
PA 88.6 84.7 84.8 78.7 67.7 52.5 76.9 92.7 81.4

Table 3
Accuracy of damage detection using Suppasri et al.'s reference function.

DS0 DS1 DS2 DS3 DS4 DS5 DS0–DS5 DS6 Total UA

NC 1739 2362 6131 5252 1353 2471 19,308 1602 20,910 92.3
C 118 216 518 768 342 1161 3123 7202 10,325 69.8
Total 1857 2578 6649 6020 1695 3632 22,431 8804 31,235
PA 93.6 91.6 92.2 87.2 79.8 68.0 86.1 81.8 84.9

Table 4
Accuracy of damage detection using a linear reference function.

DS0 DS1 DS2 DS3 DS4 DS5 DS0–DS5 DS6 Total UA

NC 1630 2248 5922 4929 1251 2185 18,165 1722 19,887 91.3
C 227 330 727 1091 444 1447 4266 7082 11,348 62.4
Total 1857 2578 6649 6020 1695 3632 22,431 8804 31,235
PA 87.8 87.2 89.1 81.9 73.8 60.2 81.0 80.4 80.8

Table 5
Accuracy of damage detection using a logistic reference function.

DS0 DS1 DS2 DS3 DS4 DS5 DS0–DS5 DS6 Total UA

NC 1747 2337 6008 5193 1339 2367 18,991 1079 20,070 94.6
C 110 241 641 827 356 1265 3440 7725 11,165 69.2
Total 1857 2578 6649 6020 1695 3632 22,431 8804 31,235
PA 94.1 90.7 90.4 86.3 79.0 65.2 84.7 87.7 85.5

Table 6
Cohen's kappa coefficient (κ).

Koshimura et al. Suppasri et al. Linear Logistic

κ 0.60 0.64 0.56 0.67
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due to the earthquake. Thus, it was inferred that the collapsed buildings
were produced by the tsunami. Recall that the source-rupture process
caused large ground acceleration in a wide area of northern Japan [27];
however, the collapsed buildings were concentrated in the tsunami
inundated area.

In the case study, we used two fragility functions based on empirical
information and numerical simulations of real tsunami events:
Koshimura et al. [13] and Suppasri et al. [23]. Both fragility functions
achieved results that were consistent with the surveyed data, showing
an overall accuracy of 81.4% and 84.9%. However, it is strongly re-
commended to use fragility functions conceived for the target area.
Furthermore, two additional functions were tested for use as fragility
functions: a linear and logistic function. It is worth noting that a linear
relation between the damage ratio and the engineering demand has
never been observed. However, it is desirable to examine the results
when an inappropriate fragility function is used. For the linear relation,
a 100% change ratio was assumed for an inundation depth of 7.1m
(Fig. 6c), which was the maximum inundation depth for a significant
number of buildings. Although the use of a linear function produced the
lowest accuracy, the agreement with the ground truth data was ac-
ceptable. On the other hand, the use of a logistic function produced the
highest accuracy. Following the same approach, a logistic function with
a 50% change ratio for an inundation depth of 3.55m (Fig. 6) was used
in order to achieve a large percentage of change ratio at an inundation
depth of 7.1m.

Currently, the framework is implemented in Python Language
Program. In a HP Z240 SFF Workstation (3.70 GHz), the extraction of
the features took 46.2 s and the calibration of the threshold function
took 182.3 s. We believe this runtime s short enough for emergency
response. However, the runtime can be reduced after moving the code
to a compiled language, such as Fortran or C++.

Finally, we would like to emphasize that the proposed method must
be implemented within a quick response framework after a natural
disaster. That is to say, the appropriate fragility curve and the geos-
patial building database should be available in advance and ready for
use at all times. In the aftermath of a natural disaster, the framework
must focus on retrieving the satellite imagery and the distribution of
EDP for the subsequent application of the proposed method.

5. Conclusions

Based on satellite imagery, the spatial distribution of the demand
and fragility functions, and building inventory, this paper presents a
novel collapsed building extraction method. This method overcomes
some of the disadvantages of the previous approaches to extract
building damage using satellite images. For instance, this approach
does not require manual intervention to define a boundary decision
function. Furthermore, unlike the standard machine learning algo-
rithms, the method does not require training data, which are extremely
difficult to retrieve right after a natural disaster event. It is also adap-
table to n-dimensional datasets.

The method has been applied to the 2011 Great East Japan Tsunami
in Miyagi Prefecture. Two high-resolution TerraSAR-X intensity images
taken before and after the event were used. From the SAR images, to-
gether with a geocoded building data inventory, two features were
calculated, the average difference in backscattering d and the correla-
tion coefficient r, for each building. The spatial distribution of in-
undation depth was used as the demand parameter. Collapsed buildings
were detected and compared with the building damage inventory
provided by the Ministry of Land, Infrastructure and Transportation
(MLIT). The method achieved an overall accuracy ranging from 80.8%
(using a linear fragility function) to 85.5% (using a logistic fragility
function). It is necessary however, to test the performance of the pro-
posed methodology in other kind of disaster events and other type of
sensors. Currently, these issues represent our future work. Furthermore,
the effects of the uncertainties on the numerical simulation of the

hazard in the results will be addressed in a future paper.
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