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An earthquake (Mw6.2) struck Kumamoto Prefecture,
Japan on April 14, 2016. A larger event (Mw7.0)
struck the same area 28 hours later, on April 16. The
series of earthquakes caused significant damage to
buildings and infrastructures. Remote sensing is an
effective tool to grasp damage situation over wide ar-
eas after a disaster strikes. In this study, two sets of
ALOS-2 PALSAR-2 images taken before and after the
earthquake were used to extract the areas with col-
lapsed buildings. Three representative change indices,
the co-event coherence, the ratio between the co- and
pre-event coherence, and the zzz-factor combining the
difference and correlation coefficients, were adopted
to extract the collapsed buildings in the central district
of Mashiki Town, the most severely affected area. The
results of a building-by-building damage survey in the
target area were used to investigate the most suitable
threshold value for each index. The extracted results
were evaluated by comparing them with the reference
data from field surveys. Finally, the most valid fac-
tor was applied to larger affected areas for Kumamoto
City and its surroundings.

Keywords: ALOS-2 PALSAR-2, synthetic aperture
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1. Introduction

The 2016 Kumamoto earthquake was a series of earth-
quake events, including the moment-magnitude (Mw) 7.0
mainshock and the Mw6.2 foreshock [1]. The mainshock
occurred in the Futagawa Fault, close to the Hinagu Fault.
Thus, the first event was designated as the “foreshock”
and the second one as the “mainshock.” The foreshock
occurred at 21:26 (local time) on April 14, 2016. Its epi-
center was shallow in depth and located at the end of the
Hinagu Fault, at 32.79◦N, 130.70◦E [1]. Strong shaking,
7 on the Japan Meteorological Agency (JMA) seismic in-
tensity scale, was observed in Mashiki Town (population:
33,000) and to the east of the city of Kumamoto (pop-
ulation: 735,000). A considerable amount of structural
damage and a number of human casualties were reported,
including 9 deaths [2]. Twenty-eight (28) hours later, the
mainshock struck Kumamoto Prefecture at 1:25 AM on

Fig. 1. The estimated distribution of the Instrumental
JMA seismic intensity by QuiQuake [3] and the location of
PALSAR-2 images used in this study.

April 16, 2016. The epicenter was located 4.5 km north-
west of the foreshock. Strong motion jolted the whole of
the island of Kyushu, as shown in Fig. 1 [3], with motion
of JMA seismic intensity 7, the largest value on this scale,
being observed at Mashiki and Nishihara [4].

Due to the strong shaking, impacts associated with the
Kumamoto earthquake sequence were extensive. More
than 150 landslides were reported in Kumamoto Prefec-
ture. The largest landslide was observed in the Kawayo
district of Minami-Aso village. This landslide caused
the Aso-Ohashi Bridge, with a 206 m span and an 8 m
width, to fall into the Kurokawa River. The earthquake
also caused the suspension of road and railway networks.
Kumamoto Airport was closed until April 18. Thus, it
was difficult to carry out field surveys soon after the
earthquake. A total of forty-nine people died and one
went missing in the earthquake sequence, mostly due to
the collapse of wooden houses in Mashiki and landslides
in Minami-Aso. More than 8,000 buildings collapsed,
and about 30,000 buildings were severely damaged. Ku-
mamoto Castle, which is designated as an Important Cul-
tural Property of Japan, sustained severe damage to its
stone walls and roof tiles.

In recent decades, remote sensing has been used to es-
timate damages due to disasters. Among other sensors,
synthetic aperture radar (SAR), which can operate both
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day and night under all weather conditions, is an effec-
tive aid to emergency response. Various damage detection
methods using multi-temporal SAR images taken before
and after a disaster have been proposed [5–7]. The satel-
lite ALOS, which carries two optical sensors and one L-
band SAR sensor, was launched by the Japan Aerospace
Exploration Agency (JAXA) in 2006 [8]. One of the main
objectives of ALOS was worldwide disaster monitoring.
Matsuoka and Estrada [9] used the single-polarization
ALOS PALSAR data to evaluate damage of buildings in
the 2007 Pisco, Peru earthquake. Park et al. [10] and
Watanabe et al. [11] mapped urban areas affected by the
2011 Tohoku-Oki, Japan earthquake from PALSAR data
in the full-polarimetric mode. The satellite ALOS-2, a
follow-up mission of the ALOS program, was launched
on May 24, 2014 with an enhanced high-resolution SAR
sensor, PALSAR-2, aboard. Owing to the right-and-left
looking function of the PALSAR-2 SAR sensor, the ob-
servation repetition frequency was improved, and it is
now possible to monitor affected areas soon after disaster
strikes [8]. Bahri et al. [12] used the pre-and post-event
ALOS-2 PALSAR-2 imagery to assess the damage in the
2015 Gorkha, Nepal earthquake. Watanabe et al. [13] ex-
tracted damaged urban areas based on the changes in the
interferometric SAR coherence of PALSAR-2 data for the
same event.

In this study, six single-polarized ALOS-2 PALSAR-2
images taken before and after the 2016 Kumamoto earth-
quake were used to extract the areas having severe build-
ing damage. Three common change indices were adopted
to evaluate the damage in Mashiki. The threshold val-
ues for building damage classification were investigated
by introducing reference data from field surveys. Dam-
age maps obtained using the different change indices were
produced, and they were compared with the truth data.
Then, the most suitable index and its threshold values
were applied to the affected densely inhabited districts
(DIDs) in Kumamoto Prefecture.

2. Study Area and Image Data

2.1. The Affected Densely Inhabited Districts (DID)
in Kumamoto Prefecture

This study focused on the affected densely inhabited
districts (DIDs) in Kumamoto Prefecture, the area out-
lined in orange in Fig. 2. This area includes, from north
to south, Koshi, Nishigoshi, Kikuyo, Kumamoto, and
Mashiki. Mashiki, located above the Futagawa Fault and
one of the most affected areas, was selected as the target
area. In both the foreshock and mainshock, level 7 Seis-
mic Intensity on the JMA scale was observed in this area.
A close-up of the aerial photograph taken by the Geospa-
tial information Authority of Japan (GSI) at 12:21 AM
local time on April 16, 2018 is shown in Fig. 3(a). Many
blue sheets, which indicated damage, were confirmed on
the top of the buildings.

A land-cover map published by JAXA is shown in

Fig. 2. Color composites of the geo-coded pre- and post-
event PALSAR-2 backscattering coefficient images taken in
paths 23 (a) and 28 (b). The orange polygons show the af-
fected densely inhabited districts (DIDs); the yellow frame
shows the target area in Mashiki.

Fig. 3(b) [8, 14]. About 45% of the target area was classi-
fied as the urban with buildings existing. According to the
Fundamental Geospatial Data published by the GSI, there
are about 5,000 buildings in this area [15]. The damage
grades of 2,340 buildings were evaluated by the field sur-
veys of the Architectural Institute of Japan (AIJ) [16]. The
average ratio of collapsed buildings in each 57 m × 57 m
grid-cell was calculated, as shown in Fig. 3(c).

There were collapsed buildings in 155 of 414 cells. The
area between the Mashiki Town Hall and the Akitsu River
was severely damaged, with a building-collapse ratio of
more than 50%. This damage ratio map was used as the
reference data in this study.

2.2. PALSAR-2 Data and Pre-Processing
Six pre- and post-event PALSAR-2 data were used in

this study. These images were taken in StripMap mode
by the HH polarization from the two different descending
paths. The acquisition conditions are listed in Table 1.
From path 23, two data were taken before the foreshock,
and one was taken after the mainshock. From path 28, one
data was taken before the foreshock, one was between the
foreshock and mainshock, and another one was after the
mainshock. They were provided as the level 1.1 data in
the slant range, which were represented by complex I and
Q channels to preserve the amplitude and phase informa-
tion.

Several pre-processing steps were applied before the
damage extraction. The three data in each pair were reg-
istered on a sub-pixel level. A globally available digital
elevation model (SRTM: shuttle radar topography mis-
sion) was used to compensate for the image distortion
caused by the terrain heights. Then they were projected
onto a World Geodetic System (WGS) 84 reference el-
lipsoid with a resampled square pixel size of 2.5 m. The
amplitude information was converted to the backscatter-
ing coefficient (sigma naught) in the dB unit, accord-
ing to the calibration factor [8]. The color composites
of the backscattering coefficient images are shown in
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(a) Aerial photograph

(b) Land-cover map

(c) Building-collapse map

Fig. 3. (a) Aerial photograph of central Mashiki taken at
12:21 AM on April 16, 2016, soon after the mainshock, by
the Geospatial Information Authority of Japan (GSI) [15];
(b) land-use and land-cover map of the same area published
by JAXA [8,14]; (c) building-collapse map, created accord-
ing to the field surveys of the Architectural Institute of Japan
(AIJ) [16], was introduced as the reference data, where the
damage was classified into five levels according to the per-
centage of collapsed buildings.

Table 1. Acquisition conditions of the six ALOS-2
PALSAR-2 data used in this study.

Date Incident Resolution Path Look
angle [◦] (R×A) [m] direction

2015/11/30
2016/03/07 36.2 1.43×2.03 23 right
2016/04/18
2014/11/14
2016/04/15 32.4 1.43×1.74 28 left
2016/04/29
∗Bold font represents the master image of the pair

Fig. 2. Due to the seasonal difference between the pre-
and post-event images, colored areas that were caused by
the change in vegetation are observed in the suburbs of
Kumamoto.

3. The Change Indices

The objective of this study is to grasp the damage sit-
uation soon after a disaster strikes. Thus, the simplest
extraction method using threshold values of the change
indices was adopted. Several change indices were pro-
posed in previous studies [5–7]. Coherence and its ex-
tension factors, the coherence ratio and the normalized
difference coherence index, are the reprehensive indices
in the phase-base analysis. In the intensity-base analy-
sis, the difference and the correlation coefficient are com-
monly used to evaluate the multitemporal changes. The z-
factor, proposed by the present authors, is a combination
of the difference and the correlation coefficient [17]. Ow-
ing to the sensitivity, the coherence obtained on an L-band
SAR image makes it easier to assess the damage than it is
on data acquired at C-band [18]. However, the previous
L-band sensors (JERS-1, PALSAR) with their low resolu-
tion only enable damage assessment at the big block level.
The utility of the z-factor in terms of extracting damage
in a building unit from high-resolution TerraSAR-X im-
ages has been proven [19]. However, the validity of high-
resolution L-band SAR images in damage extraction at
the building level has not yet been reported. In this study,
the coherence, the coherence ratio, and the z-factor were
used to extract areas damaged in the Kumamoto earth-
quake.

3.1. The Phase-Based Indices
The coherence (γ) is the interferometric correlation be-

tween two SAR complex data, which is calculated by the
ratio between coherent and incoherent summations, as in
Eq. (1).

γ = ∑C1C2√
∑ |C1|2

√
∑ |C1|2

, . . . . . . . . (1)

where C is a complex number with phase (Ø) and magni-
tude (A) [20].
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The estimated absolute value of γ , which ranges be-
tween 0 and 1, is the function of systemic spatial decor-
relation (noise) and temporal decorrelation between the
master and slave acquisitions (geometrical decorrelation
and temporal decorrelation). Due to the complicated
decorrelation conditions, it is difficult to compare two co-
herences from different SAR pairs directly. Consequently,
the coherence ratio was proposed to judge the coherence
changes [18, 21].

To extract damaged areas from images after a disas-
ter, the coherence can be obtained by one pre- and one
post-event SAR data set. However, more than 3 images,
commonly two pre-event images and one post-event im-
age, are essential for the coherence ratio. In this study, the
coherence was obtained in the slant range complex data.
It was then projected with the pixel size of 2.5 m onto the
base map. The coherence ratio was calculated from the
geo-coded coherence data.

3.2. The Intensity-Based Indices
The difference (d) and the correlation coefficient (r) are

calculated using Eqs. (2–3).

d = Ī b − Ī a , . . . . . . . . . . . . . . . (2)

r =
N

N

∑
i

Ia · Ib −
N

∑
i

Ia

N

∑
i
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⎛
⎝N

N

∑
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∑
i
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)2
⎞
⎠

(3)

where i is the pixel number, Iai and Ibi are the backscatter-
ing coefficients of the second (post) and first (pre) images,
and Ia and Ib are the corresponding averaged values over
the N = 5×5 pixel window surrounding the pixel i.

The difference and the correlation coefficient were cal-
culated from the geo-coded intensity SAR images. Thus,
the window size of 12.5 m × 12.5 m is close to the size of
a residential lot. For a collapsed building, it is possible for
there to be both the positive and negative changes in the
SAR backscatter intensity. Thus, the large absolute differ-
ence value represents a high probability of changes. The
correlation coefficient ranges between −1 and 1. The low
value represents high possibility of changes. The absolute
value of the difference and the correlation are combined
into a new change index (z-factor) to describe the changes,
as in Eq. (4) [16].

z =
|d|

max(|d|) −wr . . . . . . . . . . . (4)

where max (|d|) is the maximum absolute value in differ-
ence and w is the weight between the difference and the
correlation coefficient.

A weight of w = 0.5 has been chosen in this study.
Thus, the z-factor ranges between −0.5 and 1.5, where
the high value represents a high probability of changes.

(a)

(b)

Fig. 4. Color composites of three temporal PALSAR-2 in-
tensity images (a) in path 23, and the combination of the pre-
and co-event geo-coded coherence (b) of the same pair data.

4. Experiments and Results

The adopted change indices, namely, the coherence (γ),
the coherence ratio and the z-factor, were calculated from
the SAR pairs for the central part of Mashiki. The change
indices obtained were compared with the reference data
to investigate their relation to the damage levels. Then
the target areas were classified into the different damage
levels according to a suitable threshold value. The refer-
ence data were also used to examine the accuracy of the
results. The change index with the best results for damage
classification was applied to the whole DID study area.

4.1. The Pair Taken in Path 23
The color composite of the three PALSAR-2 images

taken in the descending path 23 is shown in Fig. 4(a).
The two pre-event images were loaded in red and green,
respectively, and the post-event image was loaded in blue.
Due to the seasonal difference, a significant change in
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Fig. 5. Change indices calculated from the SAR pair in path 23, in the common region of the target area, and the reference data,
shown in a red-blue map: (a) coherence, (b) coherence ratio, (c) difference, (d) correlation coefficient, and (e) z-factor.

the backscattering echo could be confirmed in agriculture
fields. Several intensity changes were also shown in ur-
ban areas as yellow and blue regions, which were caused
by damage to buildings.

The pre-event coherence (γpre) between the image taken
on March 7, 2016 (master) and the one on November 30,
2015 (slave) was calculated from the complex SAR data,
and then it was geo-coded. The same approach was ap-
plied to the image taken on March 7, 2016 (master) and
the one on April 18, 2016 (slave) to obtain the geo-coded
co-event coherence (γco). The color composite of the pre-
and co-event coherences is shown in Fig. 4(b). The ur-
ban areas commonly show high coherence values, close
to 1, owing to stable backscatter from buildings. Signifi-
cant decreases in the co-event coherence could be seen in
a wide urban area shown in red.

The co-event coherence for the same urban area as the
reference data is shown in Fig. 5(a) by a red and blue
map. More than half of the target area is red, with the
coherence close to 0. In addition, the locations of red-
colored areas are similar to those of the high collapse-rate
areas in Fig. 3(c).

A coherence ratio between the co- and pre-event values
(γco/γpre) was also obtained, as seen in Fig. 5(b). The ratio
ranges between 0 and 780, but more than 99% of the area
is less than 3. Values close to 1 indicate no change, values
significantly less than 1 indicate a decrease, and values
significantly larger than 1 indicate an increase in the co-
herence after the earthquake. In Fig. 5(b), most of the

target area shows low values, less than 1.0. The low-value
areas match the low co-event coherence areas.

The difference (d) and the correlation coefficient (r)
were calculated from the images taken on March 7 and
April 18, 2016, as shown in Figs. 5(c)–(d). The differ-
ence was in the range from -19 dB to 17 dB. Since the
smoothing window was relatively small (5×5 pixels), the
changes in backscatter were obtained over most of the tar-
get area. The area of positive changes appears larger than
that of negative changes. For the correlation coefficient,
most of the area shows a higher correlation than 0. Com-
pared with the reference data shown in Fig. 3(c), the grid
cells with high collapse ratios show low correlation, less
than 0. Then the z-factor, which combines the difference
and the correlation coefficient, was obtained, as shown in
Fig. 5(e). The red pixels with values larger than 0 were
considered to have a high probability of change. This
combined index more clearly highlights the changed ar-
eas and makes them more similar to the reference data.

4.1.1. Examination of the Threshold Values
The profiles of the change indices, namely, the coher-

ence, coherence ratio, and z-factor for each of the collapse
levels from 0% to more than 75%, were investigated by
comparing them with the reference data. The average val-
ues and the standard deviations are shown in Fig. 6. The
coherence and the coherence ratio decrease as the collapse
ratio increases, whereas the z-factor has an almost linear
related.
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Fig. 6. Profiles of three change indices for the four different
building collapse levels, which were obtained from the SAR
pair taken in the path 23.

The average value of the coherence is 0.46 for the non-
collapsed area, and it decreases to 0.24 for the “more than
50% collapsed” grid cells. The standard deviations for
all the collapse levels are around 0.15. The average value
of the coherence ratio is 0.61 for the “not collapsed” area,
and it decreases to 0.31 for the “more than 50% collapsed”
grid cells. The standard deviations are around 0.2. Com-
pared with the profile of the coherence, the profile of the
coherence ratio is more distinctive for the different col-
lapse levels. The average value of the z-factor is −0.14 for
the “not collapsed” area, and it increases to -0.02 for the
“more than 75% collapsed” grid cells. The standard de-
viations for all the collapse levels are around 0.20. Com-
pared with the differences in the average value for each
collapse level, it is difficult to distinguish the different
collapse levels from the z-factor, due to its large stan-
dard deviation. According to Fig. 6, the “50–75% col-
lapsed” cells show similar profiles to the “more than 75%
collapsed” cells, so they were merged into one damage
level.

The probability function was introduced to examine the
most suitable threshold values for the damage classifica-
tion. For one change index value, the probabilities of the
four collapse levels, 0%, 0–25%, 25–50%, and more than
50%, are calculated automatically according to the nor-
mal distribution using their average values and the stan-
dard deviations. When the probability density values for
two neighboring collapse levels intersect, this boundary
is defined as the threshold value, following the analogy
with the maximum likelihood classification method. As
a result, the threshold values of the coherence, the coher-
ence ratio, and the z-factor for each building collapse level
were obtained and are presented in Table 2.

Table 2. The threshold values of the change indices for the
four different building collapse levels.

Change index
The building collapse level

0% 0-25% 25-50% 50-100%
Coherence > 0.40 > 0.30 > 0.26 > 0

Coherence ratio > 0.52 > 0.40 > 0.34 > 0
Z-factor < −0.12 < −0.08 < −0.05 < 1.50

Table 3. The accuracy of the classification using the co-
event coherence of the SAR pair in path 23, organized into
four collapse levels.

Ratio of Reference data
collapse 0% 0-25% 25-50% 50-100% Total UA

0% 86572 9205 5635 3372 104784 82.6%
0-25% 19863 5337 5586 4793 35579 15.0%
25-50% 7160 2379 2950 3104 15593 18.9%
50-100% 26312 9574 14987 16829 67702 24.9%

Total 139907 26495 29158 28098 223658
PA 61.9% 20.1% 10.1% 59.9% 49.9%

4.1.2. Production of the Building-Collapse Map

The building collapse maps were then obtained using
the defined threshold values. They were verified through
comparison with the reference data. The accuracy of the
result from the coherence value is shown in Table 3. The
producer accuracy (PA) for the “not collapsed” areas and
“more than 50% collapsed” areas are about 60%, whereas
the accuracies for the “0–25% collapsed” and “25–50%
collapsed” areas are lower than 21%. The user accuracy
(UA) for the “not collapsed” cells was higher than 80%,
whereas the accuracies for the building collapse areas are
all less than 25%. Thus, using the coherence index, it is
possible to distinguish the collapsed areas from those left
intact, but it is difficult to classify the level of building
damage in each grid cell. The overall accuracy is 49.9%.

Since the accuracy of the “25–50% collapsed” level is
the lowest, there was an attempt to merge it with another
damage level. The “25–50% collapsed” level was merged
with the “0–25% collapsed” level and with the “more than
50% collapsed” level. Merging the “25–50% collapsed”
level with the “more than 50% collapsed” level yields a
higher accuracy, as shown in Table 4(a). The accuracy
for the most collapsed areas increased, but the UA is still
less than 50%. The overall accuracy increases to 58.0%.

The overall accuracy of the classification using the co-
herence ratio is 52.3%. When the coherence ratio is used
instead of co-event coherence, both the UA and the PA are
higher for all the damage levels, except for the PA for the
“0–25% collapsed” level. However, the accuracy for the
damage level 25-50% was still the lowest, less than 20%,
so this damage class was also merged with the “more than
50% collapsed” areas. The accuracy matrix is shown in
Table 4(b). In this result, the coherence is more useful
for the damage classification, considering the acquisition
possibility of SAR data.

The accuracy of the result using the z-factor is the low-
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Fig. 7. The building collapse maps obtained in path 23 for the urban areas in Mashiki using (a) the coherence, (b) the coherence
ratio, and (c) the z-factor values.

Table 4. The accuracy of the classifications using the (a) co-
event coherence, (b) the coherence ratio, and (c) the z-factor
into three collapse levels, from the SAR pair in path 23.

(a) coherence
Ratio of Reference data
collapser 0% 0-25% 25-100% Total UA

0% 86572 9205 9007 104784 82.6%
0-25% 19863 5337 10379 35579 15.0%

25-100% 33472 11953 37870 33472 45.5%
Total 139907 26495 57256 223658
PA 61.9% 20.1% 66.1% 58.0%

(b) coherence ratio
Ratio of Reference data
collapser 0% 0-25% 25-100% Total UA

0% 91848 8984 9795 104784 83.0%
0-25% 17151 5051 9408 35579 16.0%

25-100% 30908 12460 38053 33472 46.7%
Total 139907 26495 57256 223658
PA 65.6% 19.1% 66.5% 60.3%

(c) z-factor
Ratio of Reference data
collapser 0% 0-25% 25-100% Total UA

0% 86382 14278 23576 104784 69.5%
0-25% 9552 1944 4373 35579 12.3%

25-100% 43973 10273 29307 33472 35.1%
Total 139907 26495 57256 223658
PA 61.7% 7.3% 51.2% 52.6%

est even after the classes are merged, as shown in Ta-
ble 4(c). The overall accuracy is 52.6%. However, the PA
for the “0-25% collapsed” level is less than 10%. Since
the z-factor uses only the backscattering intensity, it is less
sensitive than the coherence.

Since the reference map is the damaged building ratio
(the number of collapsed buildings / the number of to-
tal buildings in a grid), whereas the coherence represents
the damaged areas, the mismatch between the two data
caused the lower accuracy. Additionally, the 57-m grid
size was larger than the 12.5-m window size used for the
PALSAR-2 images. There could be further discussion if
there were a higher resolution reference, but the reference

Fig. 8. Color composites of the PALSAR-2 intensity images
taken before (R), during (G) and after (B) the earthquake in
path 28.

map is the only ground truth data that is currently avail-
able.

The building collapse map calculated from the three in-
dices is shown in Fig. 7. An urban mask according to the
land-cover map shown in Fig. 3(b) was introduced to re-
move the changes in vegetated areas. In the three results,
only limited areas were classified into the “0–25% col-
lapsed” level. The range of the reference data is shown as
the black grid cells. The red areas with more than 25%
building collapse in the results of the coherence and the
coherence ratio show high agreement with the reference
data. In contrast, the red areas obtained by the z-factor
appear more scattered.

4.2. The Pair Taken in Path 28
The color composite of the three PALSAR-2 images

taken in the descending path 28 is shown in Fig. 8. The
images taken before, during, and after the earthquake are
loaded in red, green, and blue, respectively. Several yel-
low and blue regions, which are considered as changed
after the mainshock, can be confirmed in the urban areas.
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Fig. 9. Change indices calculated from the SAR pair in Path 28 shown in a red-blue color table: (a) the first co-event coherence;
(b) the second co-event coherence; (c) the first z-factor; (d) the second z-factor. The building collapse maps obtained for the urban
areas in Mashiki using the first and the second co-event coherence (e-f).

The first co-event coherence (γco1) between the image
on November 14, 2014 (master) and the one on April 15,
2016 (slave) was calculated and geo-coded. The second
co-event coherence (γco2) between the same master image
and the image on April 29, 2016 (slave) was also obtained.
The two co-event coherences in the same area of the ref-
erence data are shown in Figs. 9(a)–(b). More than half
of the target areas show low coherence, around 0, in both
pairs. As the pre-event image was taken one year before
the other images, the decorrelation was caused by both
the long time lag and the damage. The effect of the long
time-lag occupies the de-correlation in Fig. 9(b).

The profiles of the coherence from the second co-event
pair were investigated by introducing the reference data.
The average value for the “not collapsed” grid cells is
0.43, whereas it decreases to 0.36 for the “more than 25%
building collapse” cells. The standard deviation is around
0.17. Compared with the profile of the pairs taken in path
23, the collapse levels of the pair taken in path 28 are
more difficult to separate. The threshold value for sepa-
rating the “not collapsed” level from the “collapse level”
was defined as 0.42. When the coherence was less than
0.38, the pixel was put into the “more than 25% building
collapsed” class.

The building collapse map that was obtained is shown
in Fig. 9(f). Most of the common area with the refer-
ence data was classified as “more than 25% building col-
lapsed,” which is an overestimation. The confusion matrix
obtained is shown in Table 5. The accuracies of all the
“collapse” classes are lower than they are in the results
of the co-event coherence taken in path 23. The overall

Table 5. The accuracy of the damage classifications us-
ing the co-event coherence obtained from the SAR pair in
path 28.

Ratio of Reference data
collapse 0% 0-25% 25-100% Total UA

0% 70491 11780 20321 102592 68.7%
0-25% 10367 2142 4824 17333 12.4%

25-100% 59049 12573 32111 103733 31.0%
Total 139907 26495 57256 223658
PA 50.4% 8.1% 56.1% 46.8%

accuracy is 46.8%, less than 50%.
The same threshold values were applied to the first co-

event pair to detect the damage situation after the fore-
shock, as shown in Fig. 9(e). Since there were no truth
data for the damages after the foreshock, truth data accu-
racy could not be verified. As there is only one pre-event
image in path 28, it is impossible to calculate the coher-
ence ratio.

The z-factor for the two co-event pairs was also ob-
tained in Figs. 9(c)–(d). As in the case of coherence, the
color of most of the target area indicates change after the
mainshock. Both results are more overestimated than the
reference data. The profiles of the three collapse levels
were output. The increase of the z-factor from the “not
collapsed” level to the “more than 25% collapsed” level is
only 0.02, too small for the 0.16 standard deviation. Thus,
it is difficult to classify the collapse level using these z-
factor values.
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(a)

(b) Kumamoto Castle (c) Self Defense Force

Fig. 10. (a) Building collapse map for urban areas in all
affected DIDs in Kumamoto Prefecture using the co-event
coherence of the SAR pair in the path 23, (b) enlarged area
for Kumamoto Castle, and (c) enlarged area for the Self De-
fense Force.

4.3. The Application of DID

The coherence ratio of the SAR pair taken in path 23
obtained the best result of the classifications in the pre-
vious section. However, the coherence of the co-event
pair in path 23 also yielded suitable results even though
only two images were used. According to the previous
study [22], a combination of the indices calculated from
different paths would increase the accuracy of the build-
ing damage extraction. The combination of the co-event
coherence in paths 23 and 28 was attempted. However,
affected by the decorrelation of the pair in path 28, the ac-
curacy of the combination was lower than when only the
co-event coherence of path 23 was used.

Thus, the co-event coherence of path 23 was applied
to the entire study area. The resultant building collapse
map of Kumamoto and surrounding areas is shown in
Fig. 10(a). The land-cover map was introduced to re-
move the effects of vegetation change. Fig. 10(a) shows
that the areas of building collapse were concentrated in
Mashiki. Most of Kumamoto was not affected. Several
river regions are in red due to the changes in water level

and the mismatch of the land-cover map and the SAR im-
ages. These results show high agreement with the field
survey [23].

Two enlarged regions with dense collapse areas are
shown in Figs. 10(b)–(c). These areas are Kumamoto
Castle and the North Kumamoto base of the Japan Ground
Self Defense Force. For Kumamoto Castle, the damage to
the Main Tower and Goten (palace building) in the Hon-
maru (main) area as well as the damage in the Iidamaru
area were detected successfully. The changes of cars in
the parking lots in the Ninomaru area and in the Ku-
mamoto Medical Center are also classified as damages.
In the Self Defense Force base, many collapsed areas are
mistakenly extracted. These changes are caused by ve-
hicles and tents associated with the earthquake response
activities. If only the coherence information is used, these
changes cannot be separated from building damage. How-
ever, the introduction of building footprint data promises
to improve future damage probability maps.

5. Conclusion

In this study, the areas with collapsed buildings in the
affected DIDs in Kumamoto Prefecture were extracted
from six pre- and post-event ALOS-2 PALSAR-2 im-
ages. Three representative change indices, namely, the
coherence, the coherence ratio, and the z-factor (combi-
nation of the difference and the correlation coefficient),
were adopted to evaluate the building collapse level of city
blocks. The profiles of the change indices for each dam-
age level were investigated by introducing reference data
from field surveys. Then, the threshold values for clas-
sifying the different collapse levels were estimated. The
building collapse maps for Mashiki Town were produced
and verified using the reference data. Finally, the co-event
coherence of the SAR pair in path 23 was selected as the
most effective index, as it yielded an overall accuracy of
58%. It was then applied to the entire DID area under
study.

Although the co-event coherence classified the region
into intact and collapsed areas highly accurately, its effi-
ciency was affected by the acquisition condition. If the
decorrelation of the coherence is contaminated by other
elements, e.g., time lag or noise, its accuracy declines.
The low coherence can be used to detect areas of change,
but it is still difficult to distinguish building damage from
normal changes. In the future, the proposed building col-
lapse map can be improved by imposing building foot-
prints. Its accuracy may be verified by comparing it with
other truth data, e.g., aerial photographs or airborne Lidar
data.
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