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In this study, damage caused by Typhoon Haiyan in
the city of Tacloban, Philippines is extracted from
COSMO-SkyMed imagery data. A multitemporal cor-
relation map, i.e., a color composite of the backscat-
tering coefficients obtained on different days and their
correlation coefficients, is used to indicate changes.
The Hyperboloid Change Index is proposed as a mea-
sure of the level of destruction. The method is demon-
strated in a three-dimensional Cartesian coordinate
system to elaborate the relationships among the afore-
mentioned parameters. Compared to other candidate
methods, a hyperboloid equation is found to be the
most suitable for change detection, and its resulting
positive value indicates that the typhoon had a high
level of impact on the area. Potential damage areas
are extracted using a thresholding operation, and the
results are compared to two WorldView-2 satellite im-
ages to specifically assess coastal erosion and damage
to buildings and offshore fish traps.

Keywords: damage detection, multi-temporal SAR im-
ages, coherence, correlation coefficient

1. Introduction

In a SAR interferogram, the coherence (γ), which is
derived by processing Single-Look Complex (SLC) co-
registered data, is a measure of the correlation in a small
neighborhood of geometric conditions. This value also
indicates some specific information. A strong coherence
implies that two images are homogenous, i.e., that the
land surface has not changed and the geometric condi-
tions are very similar. A weak coherence indicates that
there has been a change due to one or more conditions, in-
cluding a significant difference in look angles, constantly
moving water surfaces, or land cover changes [1]. There-
fore, SLC has been widely applied to land cover clas-
sification [2–5]. Furthermore, when used over a short
time interval, it can distinguish between processes, such
as manmade activities, moving objects, or damage detec-
tion [6–11].

Similar to the coherence, the correlation coefficient (R),
which is more commonly used in statistics, is a mea-
sure of the linear correlation between two variables or
pixel values in a local area from two images; the value of
the correlation coefficient ranges from −1 and +1. The
squared correlation coefficient of the SAR intensity has
been proven to be a quick coherence estimator and is im-
plemented in the same manner as coherence [12, 13]. Al-
though the coherence and correlation coefficient are very
similar in the sense that they provide a value for the corre-
spondence between two time points, they detect different
kinds of change on the ground. The coherence is influ-
enced by the phase difference, which is specific to the
spatial arrangement and thus to possible displacements.
The intensity correlation is related to changes in the mag-
nitude of the SAR backscatter, which in turn is related to
the roughness permutation [14]. Some studies have shown
that the aforementioned methods perform almost identi-
cally when identifying the major factor of the decorrela-
tion [15]. However, some studies have determined that the
normalized coherence is better suited to and more useful
for damage assessment [16, 17]. Another study has found
that the coherence is more useful for distinguishing slight
to moderate damage levels, whereas the correlation coef-
ficient is more sensitive to large surface changes [18]. In
contrast, some studies have claimed that the correlation
coefficient is slightly more sensitive to ground changes.
Furthermore, a combination of both methods has slightly
increased the overall accuracy [14].

Recent studies have primarily used the difference and
coherence (or the correlation coefficient) to estimate the
severity of damage caused by various natural hazards in
several ways [19]. In this study, the same parameters are
used for damage extraction but with a different concept
that overcomes the deficiency of the degree of change not
being able to be determined on one scale. A new tech-
nique is introduced that utilizes three change parameters
instead of the more common one or two.

Because buildings are the most valuable assets of fam-
ilies and businesses, the assessment of the damage to
buildings in typhoon events using high-resolution SAR
images is a suitable topic of study. Among the types
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Table 1. List of symbols and acronyms used throughout the text.

Acronym Meaning
σo backscatter coefficient
φ phase
γ coherence
a hyperboloid constant a
b hyperboloid constant b
c hyperboloid semi-major axis
d subtraction
d′ normalized subtraction
s addition
s′ normalized addition
A amplitudes
C complex number
D difference
D′ normalized difference

DSD standard deviation D
S summation
S′ normalized summation

SSD standard deviation S
R correlation coefficient
R′ normalized R

RSD standard deviation R
RC combined correlation
H ′ hyperboloid equation
Δd absolute difference change index
Δw weight method change index
Δr cylindrical change index
Δh hyperboloid change index

of damage that occurs in natural disasters, the damage
caused by winds is relatively easy to detect using satellite
imagery because winds usually damage roofs. Further-
more, because there is a high probability of cloud cover,
optical sensors are often not useful. For this reason, radar
sensors are a better choice for rapid damage assessment.
Although SARs operate in several frequency bands, the L,
C and X bands are most often used. The X-band provides
the highest spatial resolution; thus, it was most suitable
for use in this study.

Typhoon Haiyan, which is known as Yolanda in the
Philippines, was used in a case study. Considered to be
the strongest tropical cyclone in recorded history, it struck
land in the Philippines with a wind speed of 195 miles
(314 km) per hour on November 8, 2013. The typhoon
killed more than 6,300 people, displaced 16 million peo-
ple, and did a total of PhP 89 billion (US$ 2 billion)
in damage [20]. In this study, the detection of damage
to buildings was carried out using pre- and post-event
COSMO-SkyMed (CSK) images, and the results were
compared to the results of visual inspections of high-
resolution optical satellite data. The new change index
proposed in this study was designed to be suitable for de-
tecting damage to buildings and determining the degree
of change in general case between two SAR images.

The meanings of symbols and acronyms used in this
article are listed in Table 1.

2. Study Area and Imagery Data

This paper focuses on Tacloban, which is the capital
city of Leyte province and its surrounding areas on Leyte
Island. Located 580 km southeast of Manila, Tacloban
was struck by the eye wall, which was the most power-
ful part of the storm. The typhoon wrought massive de-
struction on the city. Widespread devastation was caused
by the extreme winds, and lowlands on the eastern side
of the city were submerged by storm surges. Because the
city had a large population, the number of deaths there ac-
counted for 48% (2,678) of the total deaths in the Philip-
pines in this event [20]. After the super typhoon struck
land, the storm surges and the extreme wind speeds were
the major causes of damage. Strong waves and rising wa-
ter levels, which were assumed to have heights of approx-
imately 4 m, inundated and caused catastrophic damage
to the coastal areas [21]. Tacloban’s airport was the area
most affected due to its location; it was directly hit by
the winds and surges. For these reasons, an area approx-
imately 7.0 km wide and 12.3 km long (Fig. 1), an area
which includes Tacloban’s downtown area, was selected
as the study site.

The orbital parameters of CSK were favorable for
multi-temporal image analyses. However, the two sets of
imagery data were taken from different satellites and there
were rather long time intervals between them. The pre-
event image was taken by CSK-1 on August 7, 2013; the
post-event image was taken by CSK-3 on November 20,
2013. The temporal baseline (Btemp) was 105 days, and
the perpendicular baseline (Bperp) distance between the
two satellite orbits was 885.2 m. The images were taken
from the descending path with the right-looking HH po-
larization in the StripMap HIMAGE mode [22]. Both im-
ages have incidence angles between 44.99 and 47.19 de-
grees, and they have spatial resolution of 0.94 m in the az-
imuthal direction and 1.57 m in the range direction. The
ground resolution was 2.18 m after orthorectification.

Two high-resolution optical satellite images acquired
by WorldView-2 (WV-2) were also employed as ground
truth data. The pre-event image was acquired on May 18
and the post-event image on November 11, 2013. Both
images have 8 multispectral bands (2.0 m resolution) and
a panchromatic band (0.5 m). After pansharpening using
the Brovey technique, 0.5 m resolution multispectral im-
ages were prepared.

3. Change Detection Workflow

Radiometric calibration provides images in which pix-
els can be directly related to the radar backscatter of the
scene by applying product factor corrections, e.g., the ref-
erence slant-range, reference incidence-angle, rescaling
factor and the calibration factor. This process results in
the backscattering coefficient, which is essential for the
comparison of SAR images acquired by different sensors,
by the same sensor at different times, or by the same sen-
sor in different modes [23]. To use the backscattering co-
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Fig. 1. (a) The footprint of the CSK scenes and Tacloban, Leyte study area. (b) Color composite of the pre- and post-event CSK
backscattering coefficients. (c–d) True color composite of the pre- and post-event WV-2 images.

efficient (σo) for detecting surface changes, a calibration
must first be applied to a pair of co-registered images. In
a preliminary test, a window size of 5 × 5 was found to be
suitable for the building damage detection. It was there-
fore adopted for both methods in the coherence and cor-
relation coefficient calculations.

The MTC and MTR mapping methods were applied
to evaluate the effects of the typhoon. Subsequently,
SARBM3D filtering was applied to reduce the speckle
while retaining the backscatter information [24]. An or-
thorectification using an SRTM 3 sec DEM was applied.
This application was intended to compensate for distor-
tions caused by topographical variations in the scene, to
compensate for the tilt of the satellite, and to assign real-
world coordinates to each pixel.

The change detection process was accomplished by cal-
culating the difference and summation. Then, normaliza-
tion was carried out on these values, including the corre-
lation coefficient, before the change index was calculated.
Finally, thresholding was applied by selecting the appro-
priate value regarding the pre- and post-event WV-2 im-
ages. An assessment of the accuracy was performed by
comparing this result to the visualization of the WV-2 im-
ages. The two kinds of data were not compared directly
but rather by using the final results as the extracted dam-
age percentage. A flowchart of the processes is shown in
Fig. 2.

3.1. Coherence (γγγ) and Correlation (RRR)
In repeat-pass interferometry, the coherence (γ) is de-

rived from a pair of images in the same local area taken
within a certain time-interval. The exact coherence and
the relation between the interferometric phase dispersion

can be derived using a mathematical operation. Therefore,
the coherence is frequently calculated as an estimator [25]
using two co-registered single-look complex (SLC) im-
ages, as in Eq. (1):

γ = ∑C1C2√
∑ |C1|2

√
∑ |C1|2

. . . . . . . . (1)

where C is a complex number with phase (φ ) and ampli-
tude (A) [26].

The Pearson correlation coefficient (R) is a measure of
linear dependence and is defined as the covariance of two
variables divided by the product of their standard devia-
tions. In this case, it was calculated from the backscatter-
ing coefficients (σo) of the two images using Eq. (2) with
a moving window. Because this statistic determines the
linear trend, and the SAR intensity is distributed in an ex-
ponentially increasing manner, it was appropriate to use
decibel units (dB), which are on a logarithmic scale.

R =
∑(σo

1 − σ̄o
1)(σ

o
2 − σ̄o

2 )√
∑(σo

1 − σ̄o
1)

2
√

∑(σo
2 − σ̄o

2)
2

. . . (2)

3.2. MTC and MTR Visual Interpretation
For the MTC map shown in Fig. 3a, red is used for the

amplitude of the pre-event (A1), green for that of the post-
event (A2) and blue for their coherence (γ). For the MTR
map shown in Fig. 3b, red is used for the backscattering
coefficient of the pre-event (σ1), green for that of the post-
event (σ2) and blue for their correlation coefficient (R).
The color composite of the SAR images visually provides
information on the increase/decrease of the backscattering
intensity at different times. The interferometric coherence
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Fig. 2. Data flow diagram for Multitemporal Coherence (MTC) and Multitemporal Correlation (MTR) processing. Note that that
the modules shown with dotted lines were not used to produce the final results.

(γ) and correlation coefficient (R) provide more informa-
tion on the earth surface conditions, which vary within
a small local area. However, using these measured values
alone limits the interpretation because they do not indicate
the trend of stage changes, which may be increasing or
decreasing. Therefore, they are usually used in conjunc-
tion with a pair of amplitudes (intensity and backscatter
coefficient) or their difference values. In various fields
of change detection, RGB color composite mapping is
considered to be a useful method [27, 28]. When a color
composite is used, the results of the Multitemporal Coher-
ence (MTC) and Multitemporal Correlation (MTR) meth-
ods can be represented by colors closer to natural ones,
which are easier to understand [7, 8].

Because the coherence is a complex correlation coef-
ficient, it is generally used as an absolute value or as the
amplitude of coherence in real numbers. In a stable stage
in which there is no change on the surface, the backscat-
tering in the two images is equal. The coherence was high
for the urban area, due to its high reflectivity and phase
stability, but it was low for other land cover surfaces, be-
cause of the contribution of amplitudes and phase insta-
bility. Based on these results, white pixels were used to
represent urban areas; yellow pixels were used to repre-

sent general land cover. Alternatively, the correlation co-
efficient had both positive and negative values, depending
on the trend of the changes. Thus, in the stable stage,
urban areas can have either white or yellow pixels, and
general land cover is represented using light yellow pix-
els. In both cases, smooth surfaces, e.g., roads and bodies
of water, may be either blue or black because of the am-
biguity of the correlation. Lowcorrelation surfaces that
have decreasing reflectances, e.g., areas that have flooded
or that contain objects that have been removed from the
scene, are shown in red, whereas those that have increas-
ing reflectances, e.g., areas with destruction and that con-
tain replaced objects in the scene, are shown in green.

To more clearly explain the color composition derived
by the MTR method, an RGB color model is shown in
Fig. 4a, and 3D scatter plots for each pixel are shown
in Figs. 4b-c (displaying 1% of the pixels for rendering
performance). The color gradient from black to blue rep-
resents smooth surfaces, such as bodies of water, roads,
and runways, where the backscatter was low. Alternately,
flooded areas that still remaining in the southern part of
the city exhibit a reddish-magenta color due to the re-
duction of the backscatter. Other land cover and vegeta-
tion areas with low correlation coefficients can be recog-
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Fig. 3. (a) MTC and (b) MTR maps enhanced using the standard deviation technique and (c) their histograms.
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Fig. 4. (a) MTR demonstrated in the RGB color space. (b–c) 3D scatter plots of the MTR scaled by 2 times the standard deviation
(2 SDs).

nized in yellow. The most important parts are the built-
up areas in the city. If a building did not suffer dam-
age, it is shown in white or yellow because its backscat-
ter remained high with only slight changes. In contrast,

if the typhoon caused damage to a building, a decrease
or increase in the backscatter can be observed. Due to
the washing away of buildings/houses or the accumula-
tion of debris, the MTR color composite is red (decreas-
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Fig. 5. Enlarged image of the Tacloban airport terminal: (a) WV-2 pre-event, (b) WV-2 post-event, (c) |γ|, (d) MTC, (e) R, (f)
MTR, (g) RC and (h) MTRC maps, enhanced using the standard deviation technique.

ing backscatter with a high negative correlation), magenta
(increasing backscatter with a high positive correlation),
green (increasing backscatter with a high negative corre-
lation) or cyan (increasing backscatter with a high positive
correlation).

In this study, we attempted to use the correlation coef-
ficient for several reasons. For example, the correlation
coefficient can be applied to images that have lost their
phase properties, e.g., multilook, calibrated and georef-
erenced data [29, 30], and the correlation coefficient can
be calculated rapidly using real-valued operations. It can
also be used in cases of decorrelation due to large perpen-
dicular baselines. Another main reason that we chose the
correlation coefficient is that it shows a two-tailed normal

distribution. This characteristic is suitable for our pro-
posed method, which classifies the level of change from
both sides of their mean. Since the coherence shows a
one-tailed distribution, higher values refer to larger dis-
placements, so it was inapplicable to the normalized value
discussed in the next section. It might be used in different
ways.

In the recent studies previously mentioned, several
techniques have been attempted to combine the two statis-
tics in order to retain the information contained in both
and to improve overall accuracy. For example, the corre-
lation coefficient has been used as the primary main statis-
tic with the coherence used as a multiplier. As with the
correlation coefficient, their product ranges from −1 to 1.

582 Journal of Disaster Research Vol.11 No.3, 2016



Multi-Temporal Correlation Method for Damage Assessment of Buildings
from High-Resolution SAR Images of the 2013 Typhoon Haiyan

We found that this combination did not greatly improve
the results, and there was slightly more noise. Therefore,
only the correlation coefficient was used for the process-
ing in this study. Enlarged images of the Tacloban air-
port terminal and graphs of the corresponding profiles are
shown in Fig. 5.

From the graphs of the profiles, the land cover was di-
vided into 6 categories: trees, car parking areas, build-
ings, aircraft parking areas, grass, and runways. First,
the aircraft parking areas and runways had the lowest re-
flectance. Some noise, the results of normal SAR charac-
teristics and debris spread over the surfaces, was present,
In contrast, the aircraft parking area and runway coher-
ence was highest, although it was less than 0.5, and the
correlation fluctuated between −0.5 and 0.5. Second, the
grass area had a higher reflectance and slightly lower co-
herence, and the correlation was distributed over a wider
range. Third, the tree areas had increased reflectances,
and the correlation coefficient was slightly more nega-
tive. This area could not be captured by the coherence
because all trees were totally destroyed but median strips
still remain. Next, the car parking area, which was a
mix of empty space and three rows of trees, had com-
bined characteristics and three peaks. Its reflectance de-
creased by an equivalent amount. Lastly, the east side of
the Tacloban airport terminal building was destroyed, as
evidenced by the area with the highest reflectance and re-
duced peak. The coherence slightly dropped in the dam-
aged area, whereas the correlation coefficient was slightly
negative.

4. Change Index

In the case of the visual interpretation, color composites
produced by the MTC and MTR methods have slightly
different representative colors, especially when normal-
ized by the standard deviation. These maps provide more
potential change information than two-color composites
of the backscattering intensity (or coefficient) and are eas-
ier to visually interpret, but the process of using them to
estimate damage is still complicated. Recent studies have
used several change indices, including the difference, co-
herence and correlation coefficient, to detect and classify
damage levels [7, 13, 31–33]. According to the color com-
posite, red, green, cyan and magenta refer to pixels that
have explicitly changed. Classifying them using a 2D
model usually has some weaknesses, which will be dis-
cussed later. The new method in 3D space, the method
proposed in this study, is expected to overcome shortcom-
ings in the use of the change indices.

4.1. Difference and Summation
The difference (D) is a very simple index and is com-

monly used to indicate differences in spatial analyses, but
the summation (S) has rarely been used. Both are cal-
culated using the average value in a moving window. The
two indices have a reciprocal relationship when expressed

45
o
 45

o
 

(a)

(b)

Fig. 6. (a) The rotation of the σ 1 and σ 2 axes 45o counter-
clockwise results in the Summation (S) and Difference (D)
axes. (b) The backside view of (a).

in Euclidean vectors or a Cartesian coordinate system.
When simultaneously rotating the pre-event values (σo

1 to
the red axis) and post-event values (σo

2 to the green axis)
45o counterclockwise, the operation produces the subtrac-
tion (d) axis in Eq. (3) and the addition (s) axis in Eq. (4).
In this case, the difference (D) and summation (S) can be
obtained by multiplying d and s by a constant value,

√
2,

as shown in Eq. (5). We can infer that the summation (S)
is a value on the yellow axis and that the difference (D) is
a value on the axis perpendicular to the S-axis in the red-
green plane, as shown in Fig. 6. From this insight, the axis
rotation, any equations composed of these parameters can
be expressed in a 3D space.

d = σ̄o
2 cos45◦− σ̄o

1 sin45◦ =
σ̄o

2 − σ̄o
1√

2
. . . (3)

s = σ̄o
2 sin45◦ + σ̄o

1 cos45◦ =
σ̄o

2 + σ̄o
1√

2
. . . (4)

D = σ̄o
2 − σ̄o

1 =
√

2d; S = σ̄o
2 + σ̄o

1 =
√

2s . (5)

4.2. Change Index
Because the units and ranges of R, D, and S are not the

same, a normalization was introduced. All of the factors
used to calculate the change indices in this study were
normalized by Eq. (6). Each pixel value was subtracted
by the mean value and divided by twice the standard de-
viation (SD) of the entire image. Thus, a normalized pos-
itive value represents a value above the mean, a negative
value represents a value below the mean, and 1.0 repre-
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Fig. 7. (a) Normalized Correlation (R′), (b) Difference (D′) and (c) Summation (S′) obtained from the backscattering coefficients
of the MTR map.

sents a value twice that of the standard deviation. Each
normalized value (Z-score) is denoted using the prime
symbol. According to the statistical three-sigma or 68–
95–99.7 rule, which separates the normal distribution into
three ranges using the standard deviation, normalized val-
ues of 1.0, which are located in range number 2, should
cover 95% of the total pixels. Using the normalized score,
it can be seen that D′ is equivalent to d ′ and S′ to s′ in
Eq. (6). The normalized results are shown in Fig. 7.

R′ =
R−R
2RSD

; d ′ = D′ =
D−D
2DSD

; s′ = S′ =
S−S
2SSD

(6)

In this study, the absolute difference method (Δd) of
Eq. (7) would give an ambiguous result because it could
not discriminate between the blue and black pixels repre-
senting bodies of water and the white and the white and
yellow pixels representing natural vegetation and build-
ings, according to the transformed RGB model shown in
Fig. 6. Employing a combination using the correlation
coefficient, as is used in some methods, would not im-
prove the discrimination. For example, the weight method
(Δw) [13] and the cylindrical or radius method (Δr) of
Eq. (7) also have the same weaknesses.

Δd =
∣∣∣D′∣∣∣ ; Δw =

∣∣∣D′∣∣∣−0.5R
′
; Δr =

√
R′2 +D′2 (7)

This problem can be solved by expressing the MTR in
3D space. A new change index is proposed and calcu-
lated using the normalized values of the difference (D′),
summation (S′), and correlation (R′). According to the
previous discussion, the D′-, S′- and R′-axes are mutually
orthogonal. A hyperboloid of revolution can be obtained
by rotating a hyperbola around its semi-minor axis (S′).
The standard hyperboloid form in Eq. (8) is reduced to
that in Eq. (9) when the constants a, b, and c are equal to
1. When a, b, and c are not equal to 1, a standard devia-
tion weight instead of the 2 in Eq. (6) can be introduced

to simplify the hyperboloid equation.

H
′
=

R′2

a2 +
D′2

b2 − S′2

c2 . . . . . . . . . . (8)

H
′
= R

′2
+D

′2 −S
′2

; when a = b = c = 1 . . (9)

All of the R′, D′, and S′ values that return the same H ′
value in the equation are located on the same hyperboloid
surface. Negative values representing a hyperboloid of
two sheets indicate a greater similarity. Zero values rep-
resent a conical surface, the differences and similarities
of which are almost equal. Positive values representing a
hyperboloid of one sheet indicate greater differences. By
spreading the hyperboloid “spittoon,” as shown in Fig. 8d,
this operation was capable of differentiating among bod-
ies of water, natural vegetation and buildings. Because
the H ′ value is calculated using the quadratic polynomial
formula, each range on the scale is squared. The change
index value is much easier to recognize in the linear scale
if the square root is taken. Because H ′ can be a positive
or negative number, the square root must apply to the ab-
solute value of H ′, and its sign must be retained, as in
the definition of the Hyperboloid Change Index (Δh) in
Eq. (10).

Δh = sign(H
′
)
√∣∣H ′∣∣ . . . . . . . . . . (10)

A comparison of the results obtained using the pro-
posed method and those obtained using other candidate
methods is shown in Fig. 8. Among those methods, Δh
demonstrated the best classification capability. This is
mainly because it was developed from three parameters,
which included the summation in the equation in such a
way that the magnitude of the intensity from the origi-
nal data is preserved. This index can indicate the change
in conjunction with the reflectance, so its appearance is
much clearer than those of the other indices. It is capable
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Fig. 8. Results of the change detection using the candidate methods: (a) absolute difference (Δd), (b) weight (Δw), (c) circular (Δr),
(d) proposed hyperboloid method (Δh) and enlarged images of the Tacloban airport terminal.

of distinguishing changes very clearly. Moreover, the dif-
ference between the sea and mainland can easily be iden-
tified. Yellow areas with slightly positive values represent
slight changes, such as the changes seen in the natural
vegetation. Blue areas with high negative values were al-
most unchanged over the period. These included bodies
of the water, roads, runways and buildings. In this case, a
double bounce effect area can be identified as correspond-
ing to a very low value of the index, since the summation
of the intensity is very high, as in the case of the deep blue
on the eastern side of the Tacloban airport terminal build-
ings, for instance. Although Δh was able to capture this
phenomenon, which could not have been captured by the
other indices, the area was not identified as an area of de-

struction, because the reflection from building walls was
hard to see in nadir images acquired from optical satel-
lites. Red areas with highly positive values represent sig-
nificant changes, such as damaged and flooded areas or
the growth of agricultural plants. For large buildings, the
index value was high due to the loss of surface. There-
fore, the reflectance was increased, with a high correla-
tion. The growth of vegetation over a period of 105 days,
as shown on the map, would not be counted as damage
caused by the typhoon. To avoid this possibility, the pair
of SAR images should be taken over the shortest possible
time interval.
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          WV-2 2013/11/11          WV-2 2013/05/18     2013/08/07          2013/11/20         R

(a) (c)(b)
500 m500 m 500 m

Fig. 9. Enlarged images of the Tacloban airport: (a) MTR map, (b) the pre-event WV-2 image and (c) the post-event WV-2 image.
Black-bordered areas are close-ups of Tacloban airport.

h -2.4            -1  0   1                           6.2 h         0.8-1.0          1.0-1.2           1.2

(a) (b) (c)

  WV-2 2013/11/11           h  1.0        Buildings

500 m 500 m 500 m 

Fig. 10. Assessment of damage to Tacloban airport: (a) Hyperboloid Change Index (Δh), (b) thresholding into 3 classes, (c) the
extracted damage areas overlapping on the post-event WV-2 image. Black-bordered areas are close-ups of Tacloban airport.

5. Damage Extraction and Accuracy Evalua-
tion

Thresholding is the simplest method of evaluating dam-
age levels. A suitable threshold value for the Hyperboloid
Change Index (Δh) was selected by comparing its results

with the high-resolution optical images. Because of limi-
tations in visibility due to cloud cover, two WV-2 images
taken 177 days apart were selected and used as the truth
data. An enlargement of a sample area at the Tacloban
airport is shown in Fig. 9. Because the changed index
value was designed to be a function of the standard de-
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Fig. 11. Assessment of damage to Tacloban airport: (a) Hyperboloid Change Index (Δh), (b) thresholding into 3 classes, and (c)
the extracted damage areas superimposed on the post-event WV-2 image.
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3 Classes Overall Accuracy 

Buildings Area < 500 m2 

Buildings Area > 500 m2 

      Minor  Damaged  

      Moderate  Damaged  

      Major Damaged   

      10 Largest Buildings 

%

Overall Accuracy

2Km
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Fig. 12. Damage extraction diagram when Δh’s threshold 1.2 for 545 large buildings with footprint areas is more than 500 m2,
shown in the right-side map. The damage levels were classified to 3 classes by visual inspection of the WV-2 images.

viation, a value of 1.0 is equivalent to twice the standard
deviation, which covers approximately 95% of the total
pixels. Therefore, the threshold value would be close to
1.0. By varying the threshold by trial-and-error to suitably
detect damage with the least noise, a value of 1.0 was se-
lected. The extraction result is shown in Fig. 10b, wherein
the image has been classified into 3 classes. The classes
with threshold values lower than 1.0 appear noisy. En-
larged images of the Tacloban airport terminal are shown
in Fig. 11.

The coastal erosion of the northeastern cape can be eas-
ily distinguished from the WV-2 image and the extracted
results from the proposed method. Moreover, destruc-
tion offshore, e.g., fish traps and boats, can also observed
along the west coast in Figs. 9 and 10.

For the building damage detection, the results obtained
using the same threshold value sufficiently revealed the
damage. It was difficult to separate the buildings from
much of the debris spread throughout the city, and the
resolution of the CSK images made accurate assessment
difficult. Building damage detection from remote sensing

imagery can be carried out by several sensors, e.g. optical,
SAR, and LiDAR. In this regard, the optical imagery with
spatial resolution finer than one meter is well suited to be a
reference data source. Because optical satellite images are
acquired with views almost from the nadir, only building
information on roof and the presence/absence of debris
around the lateral walls are collected [34]. Although the
superimposition of pre- and post-event optical images re-
sults in automated change detection, visual interpretation
is widely used in practice [35]. Based on a field survey
and a visual interpretation of high-resolution optical satel-
lite images, the damage level, focusing on the roofs, was
classified into two categories by Tohoku University [36].
The high damage or destruction class was used when the
roof of a building had been reduced by more than 50%
or the structure had been washed or blown away. The
low damage or survival class was used for buildings with
small variations in their geometry or roof shape. Un-
like optical sensors, a SAR sensor can capture, due to its
oblique observation scheme, more information relevant to
lateral wall damage, but its performance in urban areas is
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Fig. 13. Comparison of the results obtained using the proposed damage extraction method and the reference damage areas from the
WV-2 images for the 10 largest buildings.
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Table 2. Comparison of candidate methods to Δh by extracted area, best accuracy, and percent of footprint.

Method
Threshold =1.0 Extracted Area = 3.72%

Extracted
Area

Overlap
to Δh

Best
Accuracy

At % of
footprint Threshold

Overlap
to Δh

Best
Accuracy

At % of
footprint

Δd 5.19% 80% 89% 24% 1.11 71% 89% 20%
Δw 7.57% 80% 89% 26% 1.23 71% 89% 16%
Δr 12.65% 100% 83% 40% 1.28 83% 89% 22%
Δh 3.72% 100% 89% 32% 1.00 100% 89% 32%

Table 3. Confusion matrix of Δh for the 2-class damage extraction from the CSM images.

Table 4. Confusion matrix of Δh for the 3-class damage extraction from the CSM images.

limited by shadowing and layover issues [37].
Due to the lateral observations and surface rough-

ness measurements inherent to SAR, the backscatter from
a cluster of small buildings when they were destroyed
would be reduced because of the reduction of the dou-
ble bounce effect. Furthermore, this effect can strongly
reduce backscatter when numerous buildings are washed
away [38].

In this study, the extracted results had low accuracy
for small buildings in dense areas, but accuracy was good
enough to extract the damaged portions of large buildings.
The damage assessment was examined using 545 large
buildings with footprint areas larger than 500 m2, build-
ings that were selected from auxiliary vector data. The
damage was visually assessed from roofs in the pre- and
post-event WV-2 images. The damage was then assigned
to three classes using the relative damaged area in the
footprint of each building: less than 10% as no damage
or minor damage, from 10% to 50% as moderate damage,
and more than 50% as major damage or collapse. The sta-
tistical results are plotted in Fig. 12, and enlarged images
for the 10 largest buildings are shown in Fig. 13.

The classification procedure was carried out in two
steps. First, the major damage was classified. The moder-
ate damage was then distinguished from the minor dam-
age. The threshold value was selected by the extracted
% of building foot print that returned the best accuracy.

Comparison results in Table 2 show that the proposed in-
dex Δh was better than that of other candidate methods.
Although all methods yielded good accuracy with almost
the same value, 89%, the proposed index result was su-
perior in terms of damage extraction for several reasons.
First, it had the lowest amount of noise in the extracted
area. Second, it captured the damage to buildings with
the best performance, as the damage level extracted from
the area was highest with the proposed method, close to
50%, which we define as major damage.

In the case of Δh, the major damage class (32%) was
identified with relatively good accuracy (user accuracy of
0.88, producer accuracy of 0.66) from the extracted re-
sults. At this point, a maximum overall accuracy of 0.89
and Cohen’s kappa of 0.69 was returned in the confusion
matrix shown in Table 3. It is also notable that the mi-
nor damage could not be distinguished from the moderate
damage in the extracted results. In the case of separat-
ing moderate damage from minor damage with the crite-
rion of 28%, the overall accuracy dropped to 0.61 and the
Cohen’s kappa to 0.35 in the confusion matrix shown in
Table 4. Because the moderate damage class was pro-
portionally lower than the others, with any percentage of
roof damage being classified as moderate, we were unable
to correctly extract the moderate damage class from the
minor damage class. Therefore, the damage levels were
grouped into only two classes by combining the minor and
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moderate damage classes.
In total, 140 buildings were classified as having sus-

tained major damage. By using the proposed method,
104 buildings were extracted, and from those, the clas-
sification of 92 buildings (66%) was correctly estimated.
There were 405 buildings in the minor-to-moderate dam-
ages class, and a total of 441 buildings were extracted,
with 393 buildings (97%) correctly classified. Note that
the damaged areas of the buildings detected using this
method relied on the SAR and auxiliary vector data and
that some pixels around the selected buildings were as-
signed to the damaged area. Some of those pixels were the
damaged areas of other buildings and were not included
in this study. However, some of the pixels were affected
by changes in the environment, including flooded areas,
broken trees and debris. Those pixels should be classified
as false alarms.

6. Conclusions

The devastation wrought by the 2013 typhoon Haiyan
was investigated using a Multi-temporal Correlation
(MTR) technique applied to two CSK images. A new
change index was introduced, and of the several candidate
methods, the proposed Hyperboloid Change Index (Δh)
method, achieved the greatest building damage extraction
accuracy (89%) when distinguishing moderate damage
from minor damage. The proposed index was able to in-
dicate, with lower noise, changes over a period. Its value
was normalized and related to the standard deviation of
the difference and the correlation between the pre- and
post-event backscattering coefficients. For this event, the
index was able to efficiently extract, given a proper thresh-
old value, the severe damage to fish traps and large build-
ings. However, some limitations were observed, including
an inability to handle small buildings and/or dense areas
as well as relatively poor accuracy in distinguishing mi-
nor to moderate damage levels for large buildings. These
limitations of the proposed technique are probably related
to the spatial resolution and SAR observation scheme, so
they cannot be avoided.

The proposed Hyperboloid Change Index has clear ad-
vantages with respect to other candidate methods be-
cause it can indicate a change in conjunction with the
reflectance. The resulting change maps are clearer and
easier to interpret than the maps produced using the other
tested indices. The method is not only suitable for detect-
ing damage to buildings, but it can also be used generally
to differentiate levels of change. It is possible that further
improvements can be made by adjusting the hyperboloid
constants or the standard deviation coefficients, accord-
ing to the specific case. This improvement, in addition to
testing the influence of the window size, will be among
the main issues considered in future research.
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