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Abstract—Shadows in remote sensing images often cause prob-
lems, especially in land-cover classification and change detection.
Hence, it is very useful if the radiance of shadow areas is corrected
to the same level as that of shadow-free areas. In this study, a radi-
ance measurement was carried out to investigate the spectral char-
acteristics of sunlight. Then a method is proposed for shadow de-
tection and correction of optical imagery. First, building shadow
areas are detected using an object-based classification method that
employs brightness values and their relationship with the neigh-
boring area. Next, the detected shadow areas are corrected using a
linear function to produce a shadow-free image. The shadow pixels
with different darkness levels are corrected by using different ra-
tios to obtain a smoothly restored image. The proposed semi-au-
tomated method was applied to a QuickBird and a WorldView-2
images of Tokyo, Japan, to demonstrate the effectiveness of the
method.

Index Terms—Image enhancement, image segmentation, object
detection, optical image processing, radiometry.

I. INTRODUCTION

HE advent of new optical satellite sensors such as Ikonos,

QuickBird, GeoEye, and WorldView has enabled us to ob-
tain high-resolution images of the Earth’s surface. These high-
resolution images, however, cannot be used very effectively if
they contain shadows. For example, land-cover classification
cannot be applied to shadow areas because information related
to the ground surface is lost in the shadows. The presence of
shadows can also lead to misleading results if change detec-
tion is applied to a ground surface because of changes in the
shadows, depending on the time and season. However, owing
to the high dynamic range of recent optical sensors, surface
information can now be collected even in cast shadows and a
shadow-free image can be obtained.

Several researches have been carried out on the detection
of shadow areas in satellite and aerial optical images. Shadow
detection methods have been developed that can be categorized
into two groups. The first group includes methods that involve
the detection of shadow areas using brightness information
such as the digital number (DN). Most of these methods select
threshold values from the histogram to distinguish shadow
areas from non-shadow areas. These methods have been
widely applied to aerial photographs [1], SPOT images [2],

Manuscript received November 16, 2011; revised February 03, 2012; ac-
cepted February 16, 2012. Date of publication April 05, 2012; date of current
version July 20, 2012.

The authors are with the Department of Urban Environment Systems, Chiba
University, Chiba 265-8522 Japan (e-mail: wen_liu@graduate.chiba-u.jp; ya-
mazaki@tu.chiba-u.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2012.2189558

and high-resolution satellite images obtained from sensors
such as Ikonos [3] and QuickBird (QB) [4]. Sarabandi et al.
[5] also proposed a shadow detection method that employs the
transformation of images on the basis of color invariant indices.
The second group includes methods that detect shadow areas
by combining 3D information and sunshine models [6], [7].
Although these methods can extract shadow areas correctly,
their application is limited to cases for which 3D information is
available.

Much current research is focused on the correction of
shadows cast by clouds in medium-resolution satellite images.
The ground surface beneath clouds and their cast shadows
are replaced by other information. Song and Civco [8] used a
knowledge-based approach to reduce the effects of clouds by
replacing a shadow area with a shadow-free area in a Landsat
TM image. Kouchi and Yamazaki [9] replaced a shadow pixel
caused by clouds in a Terra/ASTER image using the mean
value of its neighboring pixels. Dare [4] and Zhou ef al. [10]
investigated these various research efforts and provided an
overview. Gamma correction and linear-correlation correction
are the most often used methods. However, these applications
are limited to specific cases, and they have not been tested
under different environmental and shadow conditions.

In this paper, a simplified approach to image pre-processing
is proposed that corrects the DN of cast shadows caused by
buildings in high-resolution optical images of dense urban areas.
First, the radiance characteristics of shadow in the different con-
ditions are investigated by spectral measurements. Next, the
shadow areas are extracted from a QB image using an object-
based method; this is done by calculating the radiance ratio be-
tween the shadow and sunlit areas for each spectral band ob-
tained from several sample locations. Finally, a method is pro-
posed to correct the DN values of the shadow areas, which uses
the radiance ratio and the DN values of the shadow-free areas.
The effectiveness of the proposed method is tested using a QB
and a WorldView-2 (WV2) images of central Tokyo.

II. CHARACTERISTICS OF RADIANCE RATIO BETWEEN
SHADOW AND SUNLIT AREAS

A spectral radiance measurement of a reference white plate
in sunlit and shadow areas were carried out to investigate gen-
eral spectral characteristics of shadow. Fig. 1 shows the result
of the radiance measurement conducted on December 4, 2008,
on the rooftop of an eight-storied building at Chiba University,
Japan. The measurement was conducted every hour in the after-
noon of the clear sunny day. The data labeled as dark shadow
was observed in a shadow of a building wall, in which sunshine
did not reach directly. The data labeled as light shadow was ob-
served in a shadow of a parapet beam, where lights illuminated
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Fig. 1. Radiance reflection of white plate measured on Dec. 4, 2008, at (a) a
sunlit place, (b) in a dark shadow of a building wall, (c) in a light shadow of a
parapet beam and (d), (e) their ratios (shadow/sunlit).

indirectly from the open sky. The ratio of the radiances in the
shadow and in the sunlit area was calculated. It is observed that
the ratio increases as the sunlight gets weaker, and decreases as
the wavelength gets longer. In Fig. 1, the range of wavelength
for each spectral band of QB sensor is shown. There is a large
difference between the dark and light shadows, which means the
ratio is also affected by the darkness of shadow.

A total of 26 spectral radiance measurements were carried
out in Japan (23 times), Chile (2 times), and the USA (1 time)
that covered a relatively wide range of site conditions and sea-
sons. These results show the same tendency as the measurement
on December 4, 2008 in which the spectral ratio of shadow is
dependent on time and season, wavelength of sunlit, and the
shadow casting condition (darkness). Although it is difficult to
apply the results of the ground measurements to optical satel-
lite images directly, these characteristics should be considered
when shadow correction is carried out.

III. STUDY AREA AND DATA

A QB image of central Tokyo, Japan, was used as an ex-
ample. The image was taken on March 20, 2007, at 10:48 AM.
At the time of the image acquisition, the Sun elevation angle
was 51.5° and the solar orientation was 155.3° clockwise from
the north. The dynamic range of the image product is 11 bits,
while the spatial resolution of the panchromatic (PAN) image
is 0.62 m and that of the multi-spectral (MS) image is 2.49 m.
The principal component (PC) spectral sharpening method was
used to create a new 0.62-m-resolution image with 4 bands,
shown in Fig. 2. This method replaces the PC band 1 of the
MS image, which is based on principal component analysis,
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Fig. 2. False color composite for the pansharpened QB image of Tokyo, Japan.

| Original image (PAN,MS) |

| Segmentation (PAN band) |

| Classified by DN value | 7 mQ
173
| Shadow area | | Sunlit area | ,_(E?'
&
[ Dak || Meciom | [ Lignt | g
=<
o
=g
=t
[ Duk [ | [ T | [swmros | | &
I I ¥ ] g’
| Re-segmentation (MS bands) | ]

Fig. 3. Flowchart of proposed shadow detection method.

with the high-resolution PAN band, and it scales the high-reso-
lution band to match the PC band 1. Hence the image can be
pansharpened without any distortion of the spectral informa-
tion. The example image covers a ground area of about a 2.16
km?. Since there are many mid-height and high-rise buildings
in central Tokyo, significant parts of the original image are in
the cast shadows of these buildings. Thus, the surface details in
the shadow areas could not be directly observed in the original
image.

IV. OBJECT-BASED SHADOW EXTRACTION

Several research efforts have extracted shadows from re-
mote sensing images using pixel-based methods [3], [4]. Such
methods, however, produce a number of extraction errors, such
as white roofs in shadow areas, due to their high brightness
values, and dark vehicles in sunlit areas, due to their low
brightness values. To reduce these errors, we employed an
object-based method, in which objects are recognized by size,
shape, and other criteria. In this study, the semi-automated
object-based method in Definiens Professional 5 software
[11] was used to extract shadow areas. A flowchart of the
proposed method is shown in Fig. 3. One PAN band and four
MS band (R, G, B, and NIR) images that were obtained prior
to the pansharpening process were employed. To reduce errors,
a water mask obtained from GIS data was applied prior to
shadow extraction. The proposed method includes three steps:
segmentation, classification, and modification.
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A. Segmentation

First, the pixels in the QB image were grouped into objects
using a heuristic algorithm for image segmentation, in which
objects are recognized in terms of four parameters: scale, color,
smoothness, and compactness. The scale parameter determines
the maximum allowable heterogeneity within an object. In gen-
eral, the object size increases with an increase in the maximum
allowable heterogeneity. Color is an important parameter for
creating meaningful objects. The factors of smoothness and
compactness are used in order to optimize image objects to
create smooth or compact borders. Color, smoothness, and
compactness are general variables that are used to optimize an
object’s spectral homogeneity and spatial complexity [12]. The
relationship between scale parameter, color, smoothness and
compactness has been described in [13].

In this study, the scale parameter was determined as 20, which
is relatively small, to create an object with one surface material.
This parameter is an overall fusion value of the color hetero-
geneity and the shape heterogeneity. Although it does not have
a unit, it is proportional to the area (pixels). Thus, it should be
changed in proportion to the square of the resolution. The effects
of color and shape were considered to be at the same level, such
that the color factor was defined as 0.5. The compactness was
also defined as 0.5, thus setting a weight that is equal to that of
the smoothness. Since the brightness value of the PAN band was
used to create objects in this step, the layer weight for the PAN
band was set as 1.0 and for the MS bands as 0. Based on these
assumptions, the entire image was segmented into 168,854 ob-
jects.

B. Classification

After the segmentation, the objects were classified into
shadow and sunlit areas based on a threshold value ¢, as
determined from a histogram of the PAN band’s DN values.
A threshold value of 167 was manually selected as the mean
value of DN, based on the histogram in Fig. 4(a). From this
histogram, the threshold value can be defined easily between
two peaks. However, in some cases there are no easily dis-
tinguishable two peaks as in Fig. 4. Then the threshold value
can be interactively defined by comparing the DN’s of several
boundaries between shadow and sunlit areas. Chen ef al. [15]
also introduced a shadow index to extract shadow areas from
multi-spectral images. Since the purpose of this study is to
correct the shadow areas created by buildings, the objects that
are smaller than 20 pixels, which is about the size of a vehicle,
were removed from the extracted shadow areas.

According to the results of the radiance measurements, the
radiance ratio changes with the darkness level of the shadow.
To enhance the accuracy of shadow correction, shadow objects
were divided into three classes: dark-shadow, medium-shadow,
and light-shadow, which correspond to shadow darkness be-
tween umbra and penumbra. Large shadow close to the foot
of a large building was defined as dark-shadow while a lighter
area at the border of shadow was defined as light-shadow. Since
the darkness level of shadow cannot be measured for a satellite
image, shadow objects were classified by their DNs. Fig. 4(b)
shows a histogram of the shadow areas in the PAN band with
the factor f,, which is used in the shadow correction process
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Fig.4. (a)Histogram of PAN band of QB image; (b) histogram of shadow areas
of PAN band and factor f describing darkness of shadow.

representing the relative weight of a dark-shadow or a light-
shadow with respect to a medium-shadow. The lowest 5% and
the highest 5% of DN were selected as the threshold values
in order to distinguish dark- and light-shadows from medium-
shadow, respectively, based on the histogram shown in Fig. 4(b).
According to this process, in the QB image of Tokyo, the objects
with a mean DN value of less than 100 (¢ = 100) were clas-
sified as dark-shadow, those between 100 and 150 (b = 150)
as medium-shadow, and those higher than 150 but less than 167
(¢ = 167) as light-shadow.

C. Modification

In the modification step, the results after classification were
improved by utilizing a neighbor relationship. The objects in
sunlight having a border line over 90% with shadow objects
were reclassified as being in shadow. Using this method, it is
possible to reduce the errors that take place in the pixel-based
extraction. Bright objects such as white roofs and light-col-
ored vehicles in shadow can be reclassified as shadow areas.
Following such modification, the objects in each class (dark-,
medium-, light-shadow, and sunlit) were returned to the pixel
level and were again segmented, using the information of the
MS bands. This time, the layer weight of the PAN band was
set as 0 and that of the MS band as 1.0. The scale parameters
were also changed in different classes. Since the range of the
DN wvalues for sunlit areas is about twice of what it is for
shadow areas, the scale parameter was set as 10 for dark- and
medium-shadow areas, which was a half value for light-shadow
and sunlit areas. The result of this shadow extraction is shown
in Fig. 5, in which 22% of the entire image was extracted
as shadow areas. By visually comparing this result with the
original image, we see that most of the shadow areas were
extracted correctly. However, there still remain several areas
that could not be extracted properly, such as a bright roof in
light-shadow.

D. Comparison Between Object-Based and Pixel-Based
Methods

To compare the accuracy of detection obtained by object-
based and pixel-based methods, pixel-based shadow detection
was also carried out using the same threshold values that were
used in the object-based method. Areas with a DN of less than
167 in the PAN image were extracted as shadow areas. After
the water mask was applied, 24% of the image was classified as
shadow. Next, the results obtained using the object-based and
pixel-based methods were compared with the original image.
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Fig. 5. Result of shadow detection and classification with three darkness levels.

In the results of the pixel-based extraction, there was consider-
able noise such as small shadows cast by trees, which were not
observed by the object-based method or in the original image.
Also, materials with high reflectivity in shadow areas could not
be extracted, such as white vehicles or bright roofs. Using the
object-based method, however, it was possible to remove these
errors. Since the object-based method extracts shadow areas on
the basis of spectral heterogeneity, the small noise in the result
can be reduced, and the bright objects in shadows can be iden-
tified by a neighbor relationship.

V. SHADOW CORRECTION

After the detection of shadow areas, shadow correction
was performed. Three major algorithms—gamma correction,
linear-correlation correction, and histogram matching—have
been employed to correct detected shadow areas by Dare [3]
and Sarabandi et al. [4]. Because, in these references, the
linear-correlation correction method proved to be most effec-
tive for restoring a shadow’s brightness, we also employed
this method in our shadow correction. There are two different
approaches to the linear-correlation correction method. One
is expressed by (1), which uses the mean value and standard
deviation of all the shadow and sunlit areas to correct the
spectral radiance of shadow areas [5], [14].

Tsunlit

y= (T - /l'shadow) + Hsunlit (1)

Oshadow
where z is the DN value in shadow, and y is the DN value after
correction; 4 denotes the mean value and o is the standard de-
viation.

The second approach is based on a linear regression analysis
using a dataset of the DN values of the shadow and sunlit areas
[16]. Both these approaches, however, correct all the shadow
areas using a single linear equation, even though this relation-
ship changes depending on the darkness of the shadow. For this
reason, some areas then display a big difference after correction,
whether they are in shadow or in a sunlit zone. In this study, a
piecewise linear equation [(2)] that considers the darkness level
is proposed in order to correct shadow areas.

1
y = 8- ;(:E - lLsha‘dow) + Hsunlit (2)
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where 7 is the ratio of the radiances in the shadow and sunlit
areas for each spectral band; 6 is the modification coefficient
representing the darkness of the shadow, shown in (3); and f; is
the factor obtained in the shadow detection step.

From the QB image of Tokyo, ftshadow Was obtained as DN =
125.7 and prgunie as DN = 399.9. Twelve pairs of samples
with the same surface material (10 pairs in the medium-shadow
class and two pairs in the light-shadow class) were manually
selected from the shadow and sunlit areas to obtain the ratio 7.
The DN values of the samples for each spectral band are shown
in Fig. 6. Since the dark-shadow was always in the middle of
a large shadow area, it was difficult to determine the surface
material without having information from the ground. Thus, no
sample was selected from the dark-shadow class. The ratio r
was calculated from the 10 pairs of samples in the medium-
shadow class using a linear regression analysis. In the present
case, r, the reciprocal of inclination, was obtained as 0.15.

Using 6, which is between —1 and 1, the dark-shadow areas
can be corrected to be brighter, and the light-shadow areas can
then connect to the shadow and sunlit areas in a natural transi-
tion. If we use the corrected DN values in a single linear equa-
tion, the same results are obtained for the medium-shadow class,
but the results show even higher DN values than for sunlit ob-
jects in the light-shadow class [Fig. 6(a)]. On the other hand, the
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Fig. 8. Comparison between original and corrected QB images in (a) false
color, (b) NDVI, and (c) supervised classification results.

results corrected by (3) go downward in the light-shadow class,
as do the values of the samples selected in sunlit areas.

The result of shadow correction after pansharpening is shown
in Fig. 7. The histogram for the PAN band after shadow correc-
tion is shown in Fig. 4(a). As can be seen in the figure, the DN
values in shadow areas (less than 167) move to larger values
(that correspond to sunlit areas). It can be seen that using the
proposed method, following shadow correction, the shadow and
sunlit areas are connected with natural transitions.

VI. VERIFICATION OF SHADOW CORRECTION

To verify the efficiency of the shadow correction method,
comparisons between the original and shadow-corrected QB
images were carried out with respect to the NDVI value and
supervised classification. A part of the image within the square
in Fig. 7 is shown in Fig. 8.

The effect of shadow is more dominant in the NIR band than
in the other bands because the radiance ratio between shadow
and sunlit areas decreases with an increase in the sunlight wave-
length [Fig. 1(d), (e)]. In general, the NDVI value, which is ob-
tained from NIR and red band images, tends to be lower in a
shadow area than in a sunlit area. Fig. 8(b) shows a compar-
ison of the NDVI images before and after shadow correction.
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TABLE I
CONFUSION MATRICES FOR VISUAL INSPECTION AND SUPERVISED
CLASSIFICATION RESULTS OBTAINED FROM CORRECTED SHADOW-FREE
IMAGE IN FIG. 8 FOR (a) SUNLIT AREAS AND (b) CORRECTED SHADOW AREAS

(a)
Accuracy for sunlit Supervised classification
areas (%) Vegetation [ Road | Roof | Total |User accuracy
Vegetation | 20.77 0.77 1 0.05 | 21.59 96.21
Road 0.23  [20.47[34.48| 34.48 59.37
Visual Roof 0.77 9.47 143.93]| 43.93 76.70
inspection|  Total 2177 [30.71]47.52]100.00
Producer | o5 4> |66.66|70.90 74.94
accuracy
(b)
Accuracy for corrected Supervised classification
shadow areas (%) | Vegetation | Road [ Roof | Total | User accuracy
Vegetation | 14.15 9.06 | 0.01 | 23.22 60.94
Road 0.56  [27.24] 4.80 [ 32.61 83.54
Visual Roof 3.16 10.53]30.48| 44.17 69.01
inspection|  Total 17.87  |46.84]|35.29(100.00
Producer | 29 17 155 17|86.37 71.87
accuracy

It is noted that some vegetation areas in shadow could not be
detected due to their low NDVI values before the correction.
However, the NDVI values of vegetation in shadow areas in-
creased following shadow correction, which made it possible to
detect vegetation in a cast shadow.

The effects of shadow correction on supervised classification
were also evaluated. Object-based supervised classification was
carried out for both the original and corrected shadow-free im-
ages by the nearest neighbor method. Three objects were se-
lected manually for each class as training data. The total area
of all the training data shares about 5% of the image. A part
of the results are shown in Fig. 8(c). The original QB image
was labeled as eight classes: water, vegetation, railway tracks,
roads, and roofs with three different colors, and shadow. The
shadow-free image was classified into seven classes (without
shadow) using the same training data. Because the spectral char-
acteristics of the artifacts were similar, roads and roofs could
not be distinguished very well, as shown in Fig. 8(c). We would
note that the areas of the shadow class were re-classified into
other land-cover classes. We performed visual inspection using
a digital aerial photograph in order to verify the accuracy of the
supervised classification result for the corrected shadow-free
image in Fig. 8(a). Comparisons of the classified results for
sunlit and corrected shadow areas are shown in Table I. For
sunlit areas, the overall accuracy was 74.94 with a kappa coeffi-
cient of 0.61. For the corrected shadow areas, the overall accu-
racy was 71.87 with a kappa coefficient 0.57. Based on this com-
parison, the classification results show a similar level of accu-
racy for the sunlit and corrected-shadow areas, thus confirming
that the proposed shadow correction method can effectively cor-
rect the radiance in shadow areas.

A WV2 image of Tokyo taken on November 5, 2010 with
a Pan band and 4 MS bands (B, G, R, and NIR) was also in-
troduced to demonstrate the efficiency of the proposed shadow
correction method for other optical sensors. Since the capability
of the WV2 sensor is similar to QB’s, only the threshold value
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Fig. 9. Comparison between original and corrected WV2 images in (a) false
color; (b) a part of NDVI and (c) supervised classification results.

TABLE 11
CONFUSION MATRICES FOR VISUAL INSPECTION AND SUPERVISED
CLASSIFICATION RESULTS OBTAINED FROM CORRECTED SHADOW-FREE
IMAGE IN FIG. 9 FOR (a) SUNLIT AREAS AND (b) CORRECTED SHADOW AREAS

@

Supervised classification

Accuracy for sunlit

areas (%) Vegetation | Road | Roof | Total |User accuracy
Vegetation | 23.35 0.11 [ 0.01 | 23.47 99.51
Road 0.00 28.73(14.19]| 42.93 66.93
_Visue!l Roof 0.00 8.08 [25.53] 33.61 75.95
mspection|  Total 23.35 [36.92139.73(100.00
Producer |46 09 |77.82|64.25 77.61
accuracy
(b)

Accuracy for corrected Supervised classification

shadow areas (%) | Vegetation | Road | Roof | Total |User accuracy
Vegetation | 1854 | 0.06 | 0.47 [ 19.06| 9725
Road 000 |35.69]9.52 4521 7894
Visual | Roof 015 |12.54[23.04]3573| 6449
inspection|  Total 18.69  [48.28(33.03[100.00
Producer | o9 16 |7391(69.77 7727
accuracy

for shadow and the ratio in each band should be defined man-
ually. The comparison of the original and corrected WV2 im-
ages in false color is shown in Fig. 9(a). A part of NDVI and
supervised classification results within the square in Fig. 9(a)
are shown in Fig. 9(b), (c). We also conducted accuracy evalu-
ation of the supervised classification results for the corrected
shadow-free image by visual inspection, which are shown in
Table II. For sunlit areas, the overall accuracy is 77.61 with a
kappa coefficient of 0.66. For the corrected shadow areas, the
overall accuracy is 77.27 with a kappa coefficient 0.63, very
close to the sunlit areas.

The application to the WV2 image shows the proposed
method is also useful for other optical sensor images. However,
the efficiency of shadow correction depends on the dynamic
range of a sensor. As 8-bit images do not measure dark areas
with the necessary high radiometric resolution, the quality of
shadow extraction is severely reduced compared to 11-bit data.
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VII. CONCLUSIONS

In this paper, a building shadow detection and correction
method for high-resolution optical satellite images was pro-
posed and examples were provided for a dense urban area.
Twenty-six radiance measurements were performed to demon-
strate the natural variability of the radiance ratio in different
environments and shadow conditions. The characteristics of
shadow obtained for the ground measurements gave us the
motivation to develop a semi-automated shadow correction
method.

An object-based method was introduced to extract shadow
areas from a QB image using brightness values and a neighbor
relationship. The method showed higher shadow detection ac-
curacy than the conventional pixel-based method, especially for
bright materials in shadow. A piecewise linear-correlation equa-
tion was proposed to correct shadow pixels on the basis of DNs
of sample areas in the QB image by employing three levels of
shadow darkness.

Verification of the shadow detection and correction method
was carried out using a QB and a WV2 images of central Tokyo
that were acquired in 2007 and 2010. The supervised classifi-
cation results showed reasonable restoration of the brightness
values in shadow areas. The pansharpened images were also
generated to visually examine the correction effects. The NDVI
images showed significant restoration of the NDVI value in
shadow following correction, because this value is highly af-
fected by shadow. Although further investigation is required,
it was confirmed that land-cover classification of shadow areas
can be significantly improved by applying the shadow detection
and correction method proposed in this study.

REFERENCES

[17 J. S. Shu and H. Freeman, “Cloud shadow removal from aerial pho-
tographs,” Pattern Recognit., vol. 23, no. 6, pp. 647—656, 1990.

[2] V. K. Shettigara and G. M. Sumerling, “Height determination of ex-
tended objects using shadows in SPOT images,” Photogramm. Eng.
Remote Sens., vol. 64, no. 1, pp. 35—44, 1998.

[3] X. Huang and L. Zhang, “Morphological building/shadow index for
building extraction from high-resolution imagery over urban areas,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol.
5, no. 1, pp. 161-172, Feb. 2012.

[4] P. M. Dare, “Shadow analysis in high-resolution satellite imagery of
urban areas,” Photogramm. Eng. Remote Sens., vol. 71, no. 2, pp.
169-177, 2005.

[5] P. Sarabandi, F. Yamazaki, M. Matsuoka, and A. Kiremidjian,
“Shadow detection and radiometric restoration in satellite high resolu-
tion images,” in Proc. IEEE 2004 Int. Geoscience and Remote Sensing
Symp. (IGARSS), 2004, vol. 6, pp. 3744-3747.

[6] Y. Li, T. Sasagawa, and P. Gong, “Integrated shadow removal based
on photogrammetry and image analysis,” Int. J. Remote Sens., vol. 26,
no. 18, pp. 3911-3929, 2005.

[7]1 J. Y.Rau, N. Y. Chen, and L. C. Chen, “True orthophoto generation of
built-up areas using multi-view images,” Photogramm. Eng. Remote
Sens., vol. 68, no. 6, pp. 581-588, 2002.

[8] M. Song and D. L. Civco, “A knowledge-based approach for reducing
cloud and shadow,” presented at the 2002 ASPRS-ACSM Annu. Conf.
and FIG XXII Congr., Washington, DC, 2002.

[9] K. Kouchi and F. Yamazaki, “Characteristics of tsunami-affected areas
in moderate-resolution satellite images,” I[EEE Trans. Geosci. Remote
Sens., vol. 45, no. 6, pp. 1650-1657, 2007.

[10] W.Zhou, G. Huang, A. Troy, and M. L. Cadenasso, “Object-based land
cover classification of shaded areas in high spatial resolution imagery
of urban area: A comparison study,” Remote Sens. Environ., vol. 113,
no. 8, pp. 1769-1777, 2009.

[11] Definiens [Online]. Available: www.ecognition.com



1302

[12] K. Navulur, Multispectral Image Analysis Using the Object-Oriented
Paradigm. Boca Raton, FL: CRC Press, 2006, ch. 4, pp. 20-21.

[13] M. Baatz and A. Schipe, “Multiresolution Segmentation: An Opti-
mization Approach for High Quality Multi-Scale Image Segmenta-
tion,” 2000 [Online]. Available: http://www.ecognition.cc/download/
baatz_schaepe.pdf

[14] T.Nakajima, T. Guo, and Y. Yasuoka, “Simulated recovery of informa-
tion in shadow areas on IKONOS image by combing ALS data,” pre-
sented at the 23rd Asian Conf. Remote Sensing (ACRS), Kathmandu,
Nepal, 2002.

[15] Y. Chen, D. Wen, L. Jing, and P. Shi, “Shadow information recovery in
urban areas from very high resolution satellite imagery,” Int. J. Remote
Sens., vol. 28, no. 15, pp. 3249-3254, 2007.

[16] Q.Zhan, W. Shi, and Y. Xiao, “Quantitative analysis of shadow effects
in high-resolution images of urban areas,” Int. Archives Photogram-
metry, Remote Sensing and Spatial Information Sciences, vol. 36, pt.
8/W27, 2005.

Wen Liu (S’10) was born in Hangzhou, China, in
1985. She received the B.S. and M.S. degrees in civil
engineering from Chiba University, Chiba, Japan, in
2008 and 2010, respectively. She is currently pur-
suing the Ph.D. degree at the same university.

Her research interest is in urban remote sensing
using very-high-resolution optical sensors and syn-
thetic aperture radar.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 5, NO. 4, AUGUST 2012

Fumio Yamazaki (M’03) was born in Ishikawa,
Japan, on May 27, 1953. He received the M.S.
degree in civil engineering from the University of
Tokyo, Tokyo, Japan, in 1978. After serving as a
Visiting Scholar at Columbia University, New York,
NY, from 1984 to 1986, he received the Ph.D. degree
in civil engineering from the University of Tokyo in
1987.
He is currently a Professor of Urban Environment

‘, Systems in the Graduate School of Engineering at
Chiba University, Chiba, Japan. He was also a Re-
search Engineer at Shimizu Corporation, Japan, and worked as an Associate
Professor at the University of Tokyo and a Professor at the Asian Institute of
Technology, Thailand. His research interests include stochastic engineering me-
chanics, earthquake engineering, and more recently, the application of GIS and
remote sensing technologies to disaster management.

Prof. Yamazaki is a member of the Japan Society of Civil Engineers, the
American Society of Civil Engineers, the Earthquake Engineering Research In-
stitute, and the Seismological Society of America, among others.



