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ABSTRACT: Two sets of high-resolution SAR imageries from TerraSAR-X were used to 
calculate radar characteristics like correlation coefficient and backscatter difference for 
building damage detection after the 2010 Haiti earthquake in the city center of 
Port-au-Prince. The Normalized Difference Vegetation Index from a Quickbird image was 
used to delineate non-vegetated areas. The threshold values for correlation coefficient and 
backscatter differences were determined to find the change. By our threshold values, we 
could achieve reasonable detection accuracy in low- and moderate-density areas.  
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INTRODUCTION 
 

Time factor is an important part in disaster situation and in such situation remote sensing can be a 
great boon. Remote sensing is the science of acquiring, processing and interpreting images that record 
the interaction between the electromagnetic energy and materials (Sabins 1996).With the advancement 
of technology, satellite remote sensing has become a great tool in disaster studies and found wider 
application including building damage detection (Huyck et al. 2002, Saito and Spence 2004, Yamazaki 
et al. 2005).  

Depending upon the sensor type, satellite system can be broadly divided into active and passive 
systems. Passive sensors as in optical satellite systems (e.g., Ikonos, QuickBird, GeoEye, 
WorldView-1, 2) usually depend on the solar energy for image recording whereas in active sensors as 
in a radar satellite system energy is emitted by itself and thus it is being used at both daytime and 
nighttime. Beside that a radar system like synthetic aperture radar (SAR) can penetrate clouds giving 
its advantage over an optical satellite in recording the surface condition in needy hours. This is the 
reason why SAR has been utilized in the disaster situations including earthquakes, floods and so on 
(Matsuoka and Yamazaki 2004, 2005, 2010; Stramondo et al. 2006, Rathje and Adams 2008, Thao et 
al. 2010).  

Radar satellite systems operate in different bands like L-band (frequency, f: 1-2 GHz and 
wavelength, λ: 15-30 cm), C-band (f: 4-8 GHz and λ: 3-7.5 cm), X-band (f: 8-12 GHz and λ: 15–30 
cm) and so on. The common choice of the radar band depends upon the application desired. Some 
currently available SAR satellite systems are PALSAR, TerraSAR-X, Radarsat, and ERS. PALSAR 
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(L-band, f: 1.27 GHz, λ: 23.6 cm) from JAXA captures the images in three modes with resolution of 
7-88 m at varying angle of incidence (8-60˚). ERS-1 (C band, f: 5.3 GHz, λ: 5.5 cm) from European 
Space Agency produces images in 30 m resolution, VV polarization at an angle of 23 degree. 
Radarsat-1 (C band, f: 5.40 GHz λ: 5.5 cm) from Canadian Space Agency is HH polarization system 
and captures images in 8-100 m resolution at varying angle of incidence (10-60˚). Radarsat-2 is also 
C-band but has different polarization combination as well as high-resolution (up to 3m) acquisition 
capacity. TerraSAR-X (X band, f: 9.65 GHz, λ: 3.11 cm), a satellite from German Space Agency 
(DLR) can acquire wide spectrum of data with different polarization combinations. The resolution of 
image varies 1.1 to 18 m taken at incidence angle of 20-55˚. COSMO-SkyMed from Italian Space 
Agency is an X-band system and has capacity to produce the image of ground resolution of 1-100 m. 
High resolution images (1-3 m) from COSMO-SkyMed are available only in single polarization mode.  
 Depending upon the satellite system employed, backscatter characteristics varies. This is because 
the backscatter characteristics are different for the different wavelength, angle of incidence and 
orientation of objects because of the surface roughness, permittivity and permeability (Lillesand and 
Kiefer 2000, Matsuoka and Nojima 2010). Likewise, the azimuth resolution is higher for shorter 
wavelengths while penetration power is more in larger wavelengths. Similarly, same feature can 
appear different for different wavelengths. As surface roughness is defined in terms of the radar 
wavelength, same surface which appear smooth may appear rough at a longer or sorter wavelength. 
When the object like a building is along the direction of SAR illumination, it will be seen bright in the 
SAR image due to the corner reflection. 

X-band is highly sensitive to small changes and hence can be employed in the urban change 
detection. With the advent of high-resolution SAR imagery (on the order of a decimeter) from 
TerraSAR-X and COSMO-SkyMed, it has become possible to measure the precise change and has 
found wide application in different fields like agriculture, urban land-use and so on. Many features in 
urban areas can be identified which is important in the aftermath of a disaster like a devastating 
earthquake. Many researches have carried out disaster monitoring and building damage detection 
using SAR images. However, the researches on building damage detection are on a block level, not in 
an individual building level. In this paper, we try to extract damaged buildings at an individual level in 
Port-au-Prince, the capital of Haiti, using pre- and post-event high-resolution TerraSAR-X intensity 
images.  

 
 

THE 2010 HAITI EARTHQUAKE AND DATA EMPLOYED 
 
Haiti is the poorest developing country in the western hemisphere. Its capital is Port-au-Prince, which 
is located on the south of country on the bay of Port-au-Prince. The capital was established in 1749 
AD, where about 30% of Haitian population live and is the powerhouse of the country as more than 
90% of investment and the formal jobs are found here (Republic of Haiti 2003). The population of 
Port-au-Prince was just 9,400 in 1789 and after 1950 it increased in such a way that estimated 
population in the year 2008 was 2.7 million (UN-HABITAT, 2009). Regarding the housing type 
distribution in Port-au-Prince, Kayate (combined roof and walls) comprises 0.3%, Taudis/Ajoupas 
(housing made mainly of waste construction materials including stone/wood) 2.5%, ordinary one-story 
house 62.5%, ordinary multi-story house/apartment 30.3% and others comprise 4.2%, respectively. 
Kayate and Taudis/Ajoupas are houses made by the poor. Similarly, the dominant wall types of Haitian 
houses are follows: earth (74.1%) in Kayate, earth (42.6%) in Taudis/Ajoupas, concrete/blocks/stone 
(75.7%) in ordinary single-story house, concrete (96.8%) in ordinary multi-story house/apartment 
house, and concrete (48.2%) in other housing types (Institute Haitien de Statistique d’information 
2010 cited by Eberhand et al. 2010). Ground observation by Cambridge Architectural Research (2010) 
reported that most of the houses were 1-2 stories and vast majority (65-75%) is reinforced concrete 
(RC) type. 

Though the country has been frequently affected by natural disasters like hurricane, landslide and 
flood, major earthquakes had not occurred for a long time. Past notable earthquakes include those of 
1701, 1751, 1770 and 1860 (USGS 2010). After about 150 years of time gap, an earthquake of 
moment magnitude 7.0 hit Haiti on January 12, 2010 at 4:53 PM local time, affecting many parts of 
the country including cities like Leogane, Jacmel, Petit-Goave and Port-au-Prince. The epicentre was 



 -23- 

located at Leogane (Lat. 18.44°N, Long. 72.57°W), about 17 km from Port-au-Prince. The depth of 
earthquake was 13 km. This earthquake severely affected Haiti: 217, 000 people died, more than 
300,000 people were injured (Eberhard et al. 2010) and about 3 million people were affected out of 
which 2.1 million people have been displaced (UNDP 2010).  

Many important structures including Presidential Palace, National Cathedral, and Headquarter of 
United Nations Stabilization in Haiti (MINUSTAH) were severely damaged. In a total of 403,176 
buildings were damaged (UNDP 2010). Besides building damage, liquefaction (Olson et al. 2011) and 
local tsunami (USGS 2010) were also reported due to this earthquake. Economic loss from this 
disaster is estimated as USD 7.9 billion, which is just over 120 percent of the country’s gross domestic 
product in 2009 (Government of Haiti 2010). High casualty and property losses made this event the 
most deadly one in the history of Haiti. This event was the most destructive event in any country when 
compared with the death of people to the total population of a nation in modern times (Cavollo et al. 
2010).  

The data employed in this research are from the German TerraSAR-X satellite system, which 
works at X-band (wavelength of 3.11 cm and frequency of 9.65 GHz). TerraSAR-X is the world’s first 
earth observation SAR satellite with X-band sensor onboard and has a repeat cycle of 11 days. A 
pre-event SAR image was acquired on September 17, 2008 (15 months before) and a post-event image 
was obtained on January 14, 2010 (2 days after). The acquisition mode of the images was StripMap 
with HH polarization and an incidence angle of 39.32 degrees. The satellite path was ascending with 
right-looking. These images have a ground resolution of 3 m and pixel spacing of 1.25 m. The 
employed data were Enhanced Ellipsoid Corrected (EEC) product with map geometry, projected into 
WGS84 reference ellipsoid. Fig. 1 shows the location and the pre-and post-event SAR images used in 
this study. Out of the whole images, a target area for the study was extracted as shown in Fig. 2. 

Optical images were also used for assessing the results from the TerraSAR-X images. A pre-event 
image was from QuickBird (February 4, 2009) while post-event images were from GeoEye (January 
13, 2010) and WorldView-2 (January 15, 2010).  

 

 

 

 

 

 

  (a) SAR data coverage area       (b) Before (Sep. 17, 2008)           (c) After (Jan. 14, 2010) 

 

Fig. 1  SAR data used in this study and their coverage. Red rectangle in (a) shows the geographic 
area covered by TerraSAR-X in Google Earth. Blue rectangles in (b) and (c) show the study area. 

 

Ascending 
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DAMAGE DETECTION METHODOLOGY 

 

Firstly, the study area was selected in the capital city, Port-au-Prince, covering downtown, the most 
visible damage like the presidential palace, and the areas both common in optical and radar images. 
Then an accurate positioning of two SAR intensity images was carried out. The next step was 
re-sampling of the intensity images to alter the spatial resolution from 1.25 m to 0.6 m so as to make 
comparison with the pan-sharpened optical images. Lee adaptive filter (Lee 1980) of 21×21 pixel 
window was applied to each SAR image to remove speckle noises. Since the radar image is in the 
slant range, it has to be converted into the ground range to represent the true feature and this is done 
by radiometric calibration. Radiometric calibration of each intensity image was carried out to get the 
backscattering coefficient in the ground range (sigma naught, σ0) from equation (1) (Infoterra 2008, 
Breit et al. 2010). Radar characteristics, viz the backscattering difference value (d) and the correlation 
coefficient (r), were calculated within a different pixel window size of the pre- and the post-event 
images using equations (2) and (3). Finally a 21×21 pixel window size to obtain d and r was 
determined in this study.  

 )sinloglog locDCF θσ ( 10 + )Ν∗(10 =  
10

2

10
o  (1) 

where σ0
 means the backscatter per unit area in the ground range, CF is the calibration factor, DN is 

the digital number of a pixel and θloc is the incidence angle, which can be found in the Geo-coded 
incidence angle mask file.  
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where Iai, Ibi represent the i-th pixel values (backscattering coefficients) of the post-event and 

pre-event images, respectively and iaI , ibI are the average values of the 21×21 pixels surrounding the 

i-th pixel. The correlation coefficient (r) is a scalar quantity and its value ranges between -1.0 and 1.0 
and is used to find the measure of correspondence between two-sample populations (Brown 1992).  

Fig. 2  Radiometrically calibrated images of the study area. 
 

After (Jan. 14, 2010) 

 
Before (Sep. 17, 2008) 

 

Color composite 
(R: post-event scene,  

cyan: pre-event scene) 
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Next the study area was divided into low-, moderate-, and high-building density areas from visual 
observation using the pre-event optical satellite image Fig. 3 shows the classification of the study area 
based on urban density and an example of each class. It is to be noted that the division into different 
density areas could not be done quantitatively due to the lack of the GIS data of building polygon in 
the study area. But regarding the sample areas in low- and moderate-density, there were 55 buildings 
per 78,131 m2 and 109 buildings per 46,925 m2, respectively. 

Fig. 4 shows the result of urban classification and the corresponding color composite, correlation 
and backscattering coefficient maps. Fig. 4(a) shows the urban density and the sampled areas of each 
density class while Fig. 4(b) is the color composite of calibrated SAR images (red: post-event scene, 
cyan: pre-event scene). Red areas mark the possible changes aftermath of an earthquake; cyan (Blue + 
Green) areas represent decreased backscatter while grey areas show the unchanged areas over the time. 
Likewise, Fig. 4(c) and Fig. 4(d) are the correlation coefficient and the difference of the backscattering 

Fig. 3  Classification of study area based on urban density. An example of each class is given for  
(a) low-density, (b) moderate-density, and (c) high-density areas.  

 

(a) Low                 (b) Moderate             (c) High 
 

  

 

Low Moderate 

High 

a 

b 
c 

Fig. 4  (a) Urban density of the study area. The sampled areas in each density class 
are marked from (i) to (iv), (b) color composite (Red: post-event scene, Cyan: 

pre-event scene), (c) correlation coefficient, (d) difference of backscatter coefficients. 

(a)                  (b)                     (c)                   (d) 
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coefficients (after–before), respectively. In the study area, the correlation coefficient value ranges from 
-0.9 to 1.0 while the backscattering coefficient difference ranges from -28.1 to 28.2 dB. 

Man made structures including buildings in an urban area produce strong backscatter to the radar. 
It can be seen more easily in a high resolution SAR image as TerraSAR-X. Due to side-looking nature 
of SAR, buildings facing to the SAR illumination look bright. In an urban area, double scattering 
(corner reflection) from the ground to a building wall facing the SAR illumination is also common. As 
radar collects information in the slant-range domain, a radar image inherently contains geometric 
errors like layover, radar foreshortening and shadowing (Campbell 2002). In an urban area, layover is 
common as the response from the top of a building comes earlier to the satellite than that from its base. 
Fig. 5 shows a schematic diagram of SAR interaction with a building.  

Considering these backgrounds, we extend the size of building polygons facing the SAR 
illumination in a GIS environment. This is because; previously building polygons were drawn on the 
basis of the vertical optical image while the SAR illumination is side-looking. To illustrate this idea, 
we took one sample area as seen in Fig. 6. Footprints of buildings facing the SAR illumination were 
extended equal to the layover length of the average height of buildings under consideration. The 
layover length L=H/(tan θ) was estimated assuming the average height of buildings as 10 m and using 
the SAR incidence angle θ =39.32 degrees. The heights of buildings were calculated from the optical 
images using the elevation and azimuth of the satellite and the sun as well as the length of shadow cast 
by buildings (Huang and Kwoh 2007, Iwasaki and Yamazaki 2011).  

There are altogether 29 building polygons out of which 2 were G-5, 4 were G-4, 1 was G-3 and 
rest 22 were G1-2. When we overlay different threshold values of the Normalized Difference 
Vegetation Index (NDVI), the effect of vegetation particularly trees was seen in the extended part of 
damaged buildings. So, rather than using extended footprint we use the building footprint only in this 
case of Port-au-Prince.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Schematic diagram of ideal scattering from a typical building. Here p, q , r, s, and t are ground 
reflection, corner reflection, wall reflection, roof reflection and no response, respectively.  

(Adapted after Brunner et al. 2010)  
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DAMAGE DETECTION FOR MODERATE- AND LOW-DENSITY AREAS 

 
One of the methods for detecting change from no change is thresholding. Thresholds can be 

selected generally using two methods: (a) interactive or manual trial and error procedure — in which 
analyst interactively adjusts the thresholds and evaluates the resulting image until satisfied; and (b) 
statistical measures — in which analyst selects a suitable standard deviation from a class mean (Singh 
1989, Deer 1995, and Yool et al. 1997 cited by Lu et al. 2004). 

NDVI from the pre-event QuickBird image was calculated in order to remove vegetated areas to 
avoid false extraction of building damage. For a good result, the pre-event optical image, from which 
NDVI is to be extracted, should be of similar time with the earthquake event. In our case the pre-event 
image was from February while the earthquake event was in January. When we observe the climatic 
condition of these two months, these months are dry season with little precipitation so there is much 
similarity of the vegetation condition. NDVI value depends upon the vegetation activity and differs 
from place to place. Miura et al. (2009) has used threshold value of 0.4 to separate the vegetated areas 
using a post-event image in their study for the 2006 Java earthquake. For our case, a trial and error 
method was used to find the proper threshold value for NDVI and comparing different thresholds that 
the most suitable NDVI with minimum commission error to the buildings was 0.3. So, we chose a 
NDVI value of 0.3 for the separation of vegetated and non-vegetated areas.  

Regarding the choice of threshold values of the correlation coefficient (r) and the backscattering 
difference (d), a trial and error method was employed to detect the damage distribution and finally the 
threshold values were determined. For this case we use one sample area as in Fig. 6 for getting the best 
threshold. We overlaid the different values of the r and d and looked out for values giving more 
precise damage detection. Regarding r, for Grades 4 and 5, r=0.30 is better while for Grades 1-3, 
r=0.20 is better. Considering the minimization of the both sides of error, we selected r=0.25 for the 
reference r value. Regarding high negative backscatter, we checked with values from 3 to 5 dB. The 

value |d| ≤ 3 dB could get the large G5 extraction, but more errors for G1 & 2. So |d| ≤ 4 dB was 
selected. For positive high backscatter, we also checked with values from 3 to 5 dB. d ≥ 3.0 dB is best 
in this sample area but some commission errors are found in other areas. So, we decided to use d > 4 
dB. From these observations we conclude that for the given site, the minimum correlation and high 
backscattering difference offering a good result among different choices for the damaged building was 
the threshold of r ≥ 0.25 and |d| ≥ 4 dB and hence these thresholds were taken for the low- and 
moderate density areas. An example of obtaining threshold for the backscattering difference is shown 
in Fig. 7. 

 

           (a) 0.2                         (b) 0.3                            (c) 0.4 

Fig. 6  Example of selection of thresholds by a trial and error method for NDVI. Different values 
were overlaid to the false color composite of the pre-event image. Concept of footprint extension is 
also shown in (b). Red polygons in (b) represent the building footprint while blue polygons are the 

extension of building footprint to accommodate the real situation of SAR.  
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Regarding the accuracy of damage detection by SAR, we applied these threshold values to the 
study areas with low-density, moderate-density and high-density, determined from the pre-event 
optical satellite image. Because of the availability of the post-event optical images, they were also 
utilized for the classification purpose. For the low- and moderate-density areas, damages to buildings 
(Grades 3, 4 and 5 in the EMS-98 scale) were transferred from the post-disaster need assessment 
(PDNA) survey atlas to a GIS environment by drawing the building polygons over the vertical satellite 
images. The PDNA atlas was prepared by UNITAR/UNOSAT in collaboration with different agencies 
including the World Bank (UNITAR et al. 2010) for post reconstruction efforts. As UNOSAT 
inventory has detail of damage grades, it has been also used by other researchers (Rathje et al. 2011, 
Booth et al. 2011).  

The threshold values for the NDVI, r and d were overlaid on the building footprints and the ratio 
was calculated to determine the percentage of areas covered by these threshold values; an area with 
NDVI ≤ 0.3 and either r ≤ 0.25 or |d| ≥ 4 dB. By overlaying values of damaged pixels within a 
building footprint, we perform the individual building damage detection and subsequent damage grade 
classification. 

Fig. 8 shows the result of the areal percentage (Ra) by the criteria above mentioned upon the 
building footprints of different damage grades based on the EMS-98 scale. We used the cumulative 
probability distribution of Ra of building footprints of different damage grades to determine the 
thresholds for the classification. The Ra1 value, which gives the maximum vertical distance between 
the cumulative distribution curves for G1-2 and G3-4, and the Ra2 value, which gives the maximum 
vertical distance between the cumulative distribution curves for G3-4 and G5, were chosen graphically 
The producer accuracy (PA) of different damage grades is plotted by the vertical arrows. We tried to 
classify the damage grades in following combinations: - (a) Grades 1-2, (b) Grades 3-4, and (c) Grade 

 
Fig.7  Example of selection of thresholds by a trial and error method for r and d in low- and 

moderate- density settings. Best threshold values obtained were either r ≥ 0.25 or |d|≥ 4 dB and this is 
indicated in the central figure with red square. 
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5, based upon the thresholds obtained from the Fig.7. So, if the ratio satisfying the threshold criteria 
within a building footprint is less than or equal to 25% (Ra≤ 25%) then it is considered as Grades 1-2, 
if Ra is above 25% but less than 39% it is Grades 3-4 and if Ra is more than 39% it is G5 (collapsed).   

Fig. 9 shows the methodology adopted in this study. 
When we took the intersection of low NDVI (≤ 0.3) and backscatter characteristics (r ≤ 0.25 or |d| 

≥ 4 dB) for a low-density area as in Presidential Palace in Fig. 10 (up), it was found that out of 10 
collapsed building footprints (Grade 5), 8 building footprints satisfy the threshold area ratio of more 
than 39%. As discussed in methodology, they are assumed to be collapsed buildings. Similarly, 3 out 
of 6 buildings of damage Grades 3-4 and 6 out of Grades 1-2 could be correctly identified. It is to be 
noted that three G1-2 buildings were also identified as G5. Radar backscatter is affected by the path of 

TerraSAR- X 

Pre-event Post-event 

Accuracy evaluation 

Thresholding of r, d & NDVI 

Damage assessment 

Truth data 

Visual damage detection  

NDVI 

Urban density  

Optical images 

Pre-event Post-event 

Correlation r Difference d 

Fig. 9  Flowchart of the methodology adopted in this study.  

 
 

Fig. 8  Cumulative probability distribution curves showing the areal percentage satisfying the 
threshold values from NDVI and backscatter characteristics in a building footprint for different 
damage grades in moderate- and low-density settings. Here n is the number of buildings in three 

damage classes. 
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a satellite, a layout of buildings and even vegetation. When the orientation of a tall building is towards 
the radar path, the adjacent short buildings are affected by the backscatter from the tall building. This 
may happen to the main building in the presidential complex and the undamaged building was 
identified as collapsed one. 

In Fig. 10 (down), there are 29 buildings. Out of two G5 building one could be identified while out 
of 5 Grades 3-4 buildings 3 could be found correctly. Out of 22 buildings of damage Grades 1-2, 14 
were correctly identified but one was misclassified as G5 and rest 5 were misclassified as Grades 3-4. 
Low detection of collapsed building which were facing the ground may be due to the fact that in the 
urban areas, layover is common and it falls in front of buildings facing the SAR illumination. As the 
building polygons are drawn based on the vertical optical image, many damaged building could not be 
identified. 

Similarly, when we took the intersection of low NDVI (≤ 0.3) and backscatter characteristics (r ≤ 
0.25 or |d| ≥ 4 dB) for a moderate-density area as in Fig. 11 (up), we noticed that out of 2 collapsed 
buildings, 2 buildings could be correctly identified by these threshold values (the area percentage 
within a building footprint ≥ 39% for G 5). Out of 4 Grades 3-4 buildings 2 could be correctly 
recognized. Similarly out of 16 G1-2 buildings, 7 could be correctly identified but 3 and 6 buildings 
were misclassified as G4 and G5 respectively.  

Regarding the Fig. 11 (down) there are 87 buildings out of which 19 were Grade 5, 30 were 
Grades 3-4 and 38 were Grades 1-2. Using our threshold values we could detect 15 out of G5 
buildings. Similarly out of 38 damage Grades 1-2 buildings, 23 were correctly identified but 10 were 
misclassified as G5 buildings. Here many undamaged building along the road and also in the direction 
of SAR illumination were also detected as damaged. This may be the effects of layover and corner 
reflection from the road adjacent to the buildings.  

      (a)                     (b)                    (c)                      (d) 
                                   Low-density Area (i) 

       (a)                     (b)                    (c)                     (d) 
 

    Low-density Area (ii) 
 

Fig. 10  Examples of low-density areas (Sample areas (i) and (ii) in Fig. 4(a)). (a) Color 
composite (Red: post-event scene, Cyan: pre-event scene), (b) Pre-event QuickBird 

image, (c) Post-event GeoEye image and subsequent overlay of low correlation, r ≤ 0.25 
and low NDVI (≤ 0.3), (d) Overlay of high backscatter difference |d | ≥ 4 dB: yellow 

color shows high negative d while orange color shows high positive d. 
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Table 1 shows the error matrix for the low- and moderate-density areas. Out of 33 G5 buildings, 
26 buildings could be correctly identified while out of 45 G3-4 buildings it was 14. For less-damaged 
buildings, 50 buildings were correctly identified out of 86 G1-2 buildings. Compared to Grades 3-4, 
producer accuracy for G1-2 was high, suggesting that two groupings for the classification would be 
better. The producer accuracy for the G5 buildings was 78.8% while user accuracy was 44.1%. The 
overall accuracy was 54.9%.  

If we compare the results with other studies regarding the accuracy, Matsuoka and Yamazaki 
(2004) used the linear discriminate analysis in damage detection for the 1995 Kobe, Japan earthquake. 
They achieved 78% overall accuracy. Likewise, Gamba et al. (2007) used SAR image (30m 
resolution) for the 2003 Bam, Iran earthquake and obtained the producer accuracy ranging from 65 to 
75%. Similarly, Giovanna and Gamba (2009) used the damage detection in the 1999 Golcuk, Turkey 
earthquake using ERS-1 and ERS-2 SAR images and were able to obtain overall accuracy ranging 
from 53.5 to 60.6%. All these damage detection methods were used for the block level not in an 
individual building level. So, we cannot directly compare our results with them because of the 
different data type, urban context as well as different approach of damage detection. However, our 
result is considered to be in an acceptable level. 

       (a)                   (b)                       (c)                     (d)  
Moderate-density Area (iv) 

       (a)                     (b)                    (c)                 (d)  
Moderate-density Area (iii) 

 

Fig. 11  Examples of moderate-density areas (sample areas (iii) and (iv) in Fig. 4(a)). 
(a) Color composite (Red: post-event scene, Cyan: pre-event scene), (b) Pre-event 

QuickBird image, (c) Post-event GeoEye image and subsequent overlay of low 
correlation, r ≤ 0.25 and low NDVI (≤ 0.3), (d) Overlay of high backscatter difference 
|d |≥ 4 dB: yellow color shows high negative d while orange color is high positive d. 
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DAMAGE DETECTION FOR HIGH-DENSITY AREAS 
 

Regarding the high-density area, area-based damage estimation was carried out as it was difficult 
to extract the building footprint. Vegetation was removed by the threshold NDVI value of 0.2 because 
in this case, we must remove vegetation within a block and we found that this value is most suitable 
for that objective.  

Figs. 12 and 13 show two sample high-density blocks where we have used the area-based damage 
estimation. For this purpose the threshold value was first evaluated in the sample area (vi). We 
compared the different threshold values of r and d. We noticed that backscatter difference was not 
significant compared to the correlation in detecting damaged buildings. This may be due to the fact 
that when buildings are very near to each other, backscatter contribution from the wall (corner 
reflection) is less and roof is mainly contributing to the backscatter returns to radar hence there is low 
backscatter even in the normal condition. After the disaster, damaged buildings will have less 
backscatter and this was more clearly seen from the correlation thresholds than the backscatter 
difference. So, we only used the threshold value of correlation. 

We did visual damage detection of the buildings using the temporal optical images as well as took 
the reference of the PDNA map in the high-density sample areas. The damaged building points 
(Grades 3-5) were then superposed on the different threshold values of r in a GIS environment. The 
area with highest incorporation of damaged buildings was selected for the threshold and we get the 
best result with r ≤ 0.10. Hence r ≤ 0.10 was determined as the threshold and it was also used for the 
evaluation in the next sample area. We calculated the total area covered by low correlation, the area of 
vegetation, and the net block area (the block area – the vegetated area). The area extracted by the 
threshold (r ≤ 0.10) was divided by the net block area to evaluate the probable damage ratio.  

The area covered by the threshold values in these two sampled blocks is 19,510 m2 while the net 
block areas is 147,426 m2. So, the possible damage area corresponds to about 13.2% of the total. The 
reason of the low detection ratio from the SAR images might be explained by the density of the study 
area. It is to be mentioned that although we used the PDNA’s result as the truth data, it was produced 
from the visual inspection of satellite and vertical aerial images. But there is limitation of damage 
detection from vertical images as damages to side of buildings cannot be observed. Use of oblique 
photography like pictometry (Saito et al. 2010) may be more useful than the vertical optical images in 
comparing results of building damage detection from SAR. Survey data from the ground is, of course, 
more accurate and essential for detailed assessment. 

 Table 1  Error matrix for low- and moderate-density areas 
 

  
Truth data 

 G 1-2 G 3-4 G 5 Sum User accuracy (%) 

G 1-2 50 19 3 72 69.4 

G 3-4 15 14 4 33 42.4 

G 5 21 12 26 59 44.1 

Sum_PDNA 86 45 33 164  

Producer accuracy (%) 58.1 31.1 78.8   R
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Overall accuracy (%) 54.9 
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CONCLUSIONS 

 

High-resolution SAR intensity images from TerraSAR-X were used in detecting the building damages 
for the 2010 Haiti Earthquake. Building damage detection considering side-looking nature of SAR was 
introduced and used in the extension of building polygons to the direction of SAR illumination. 
Because of the contamination by vegetation in the extended part, it could not be used in our case. This 
extension concept might be more effective in building damage detection in the places where there is 
little effect of vegetation to buildings. We calculated the correlation coefficient and the backscatter 
difference from the pre- and post-event intensity images and the threshold values from them were 
evaluated into three different building density areas: low-, moderate- and high-density.  

We could detect damaged buildings at an individual building level in three groups: damage 
Grades 1 and 2, damage Grades 3 and 4 and damage Grade 5 in the low-, and moderate-density areas 
with low correlation and large backscattering differences. Detection of collapsed buildings (Grade 5) 
could be done with producer accuracy of 78.8% and user accuracy of 44.1% and overall accuracy of 
all groups was 54.9 %.  

     (a)                   (b)                      (c)                        (d)          
High-density Area (vi) 

 
Fig. 12  Example of extraction of threshold for high-density area (sample areas (vi) in Fig. 4(a)). 

(a) Color composite (Red: post-event scene, Cyan: pre-event scene), (b) Pre-event QuickBird 
image, (c) Post-event GeoEye image and subsequent overlay of low correlation, r ≤ 0.10 and low 
NDVI (≤ 0.2) (d) Overlay of damage grade points (Red: G 5, Orange: G 4 and Yellow: G 3) on 

the best threshold. 

(a)                        (b)                         (c)          
High-density Area (v) 

 

Fig. 13  Example of application of backscatter threshold for high-density area (sample areas (v) 
in Fig. 4(a)). (a) Color composite (Red: post-event scene, Cyan: pre-event scene), (b) Pre-event 

QuickBird image (c) Post-event GeoEye image and subsequent overlay of low correlation, 
r ≤ 0.10 and low NDVI (≤ 0.2). 
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Area-based damage detection was introduced for high-density areas because building footprints 
were difficult to construct there. The accuracy of damage detection was not so high to these areas. To 
assess to accuracy of the damage detection from SAR intensity images, however, more reliable ground 
truth data are necessary.  
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