Estimación de la Pérdida Máxima Probable PML en Lima y Callao:

Aplicación a la Industria Aseguradora Peruana

Olarte J.¹, Aguilar Z.¹, Zavala C.¹, Romaní S.¹ y Escobar R.¹

Resumen

Se presenta una metodología y procedimientos, que se realizan en el Perú por primera vez, para estimar la pérdida máxima probable (PML) para una cartera de edificaciones localizados en 42 distritos de Lima y Callao, que comprenden la amenaza sísmica regional, las condiciones locales de sitio, la estimación del daño de la edificaciones por tipología estructural y las tasas de excedencia de pérdidas. En base a estos resultados, una compañía puede determinar la constitución de la reserva catastrófica de manera confiable. Finalmente, se obtiene la pérdida máxima probable en función del periodo de retorno, En general, no existen un criterio estándar para medir el PML. Sin embargo, es recomendable tomar como referencia un periodo de retorno comprendido entre 500 y 2000 años.

Palabras claves: Pérdida máxima probable, PML, peligro sísmico, vulnerabilidad estructural, riesgo sísmico, Lima y Callao.

1. Introducción

Desde épocas remotas, las ciudades de Lima y Callao han sufrido a una serie de sismos d intensidad, durante los cuales en múltiples oportunidades han acaecido cuantiosos materiales y pérdidas de vidas humanas. La principal fuente generadora de eventos sísmic afecta esta región es la zona de subducción, definida por la interacción de la Placa de Naz-Placa Sudamericana. Esta fuente puede generar eventos de gran magnitud, los históricamente (Silgado, 1978), en la zona de la costa central pueden alcanzar los 8.2 gradc escala de Richter. Los efectos de estos movimientos telúricos se ven incrementados p diferentes condiciones de sitio que se presentan en los distritos que conforman el área de es

¹ Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres, FIC-UNI. Av. Tupac Amar Puerta 7-Sector T. Lima 25, Perú. Email: jolarte@uni.edu.pe

La pérdida máxima probable (PML) es un estimador del tamaño de las pérdidas máxim sería razonable esperar en dicha cartera durante un tiempo de exposición dado. Depende riesgos individuales y de la distribución geográfica; el PML es grande si hay concentra importantes en lugares de alto riesgo sísmico, y es pequeño si la cartera está uniforme distribuida en una gran área geográfica. Dado que el PML es la pérdida máxima que esperar la aseguradora, si ésta no tuviera coberturas con reaseguradoras, las reservas de la deberían de ser iguales a ese PML. En base a estos cálculos, una compañía puede determi nivel de exposición de manera confiable, y así establecer la planeación financiera p constitución de la reserva catastrófica y de riesgos.

2. Objetivo

El objetivo de este estudio es calcular el nivel general de exposición de una cartera tomando como parámetro principal la estimación de la pérdida máxima probable (PML) distritos de la Lima y Callao utilizando la cartera de seguros contra terremoto de la Asoc Peruana de Empresas de Seguros (APESEG).

3. Amenaza sísmica

La amenaza sísmica, también conocida como peligro sísmico, se cuantifica en términos periodos de retorno de intensidades sísmicas relevantes en el comportamiento de las estru-La tasa de excedencia de una intensidad sísmica se define como el número medio de vece unidad de tiempo, en que el valor de esa intensidad sísmica es excedido. Es posible determ peligro sísmico contando las veces en que se han excedido valores dados de intensidad en interés. La primera parte que se investiga es la tectónica de la zona (figura N°1 sismicidad en una región determinada.

Empleando un modelo de distribución de sismicidad de Poisson la actividad de la i-ésima sísmica se especifica en términos de la tasa de excedencia de las magnitudes, $\lambda i(M)$, que generan. La tasa de excedencia de magnitudes mide qué tan frecuentemente se generan, fuente, temblores con magnitud superior a una dada. En estos casos, la sismicidad queda sigue:

$$\lambda(\mathbf{M}) = \lambda_0 \frac{\mathrm{e}^{-\beta \mathrm{M}} - \mathrm{e}^{-\beta \mathrm{M}_{\mathrm{u}}}}{\mathrm{e}^{-\beta \mathrm{M}_0} - \mathrm{e}^{-\beta \mathrm{M}_{\mathrm{u}}}}$$

donde M_o es la mínima magnitud relevante. λ_o , β_i , y M_u son parámetros que definen la t excedencia de cada una de las fuentes sísmicas.

La determinación de las fuentes sismogénicas se basa en el mapa de distribución de epico así como en las características tectónicas del área de influencia (Castillo, 1993). Esto nos p agrupar a las fuentes en fuentes de subducción (interacción de placas) y fuentes contine (actividad sísmica superficial).

Figura N°1. Distribución de la tectónica para la zona de estudio (Dorbath et al., 1990).

3.1. Análisis estadístico de recurrencia

La recurrencia de terremotos se determina de acuerdo a la expresión de Richter (1958):

$$Log N = a - b M$$

donde: N = número de sismos de magnitud M ó mayor por unidad de tiempo.
 a, b = parámetros que dependen de la región.

La expresión anterior también se puede escribir como:

$$N = \Gamma_0 e^{-\beta M}$$

donde: $\Gamma_0 = 10^a$ es el número de sismos por unidad de tiempo con M > 0.

 $\beta = b x \ln 10.$

Los parámetros estadísticos de recurrencia para cada una de las fuentes sismogénicas calculado utilizando la magnitud M_s . Se calculó la siguiente relación entre las magnitu y M_s :

$$m_b = 3.30 + 0.40 M_s$$

En el análisis estadístico de los parámetros de recurrencia se utilizó el método de mi cuadrados, considerando los datos de 1963 a 1992.

3.2. Atenuación de las ondas sísmicas

Para efectos del presente estudio, se utilizan dos leyes de atenuación dependiendo trayectorias que recorren las ondas en su camino de la fuente al sitio.

3.3. Atenuación de aceleraciones de subducción

Es evidente que existe escasez de datos de registros de aceleraciones en el Perú. Los que se tienen son de Lima. La ley de atenuación de aceleraciones (Casaverde y Vargas, es:

$$a = 68.7 e^{0.8Ms} (R + 25)^{-1.0}$$

donde: a = aceleración en cm/seg^2 .

M_s = magnitud de las ondas superficiales.

R = distancia hipocentral en km.

3.4. Atenuación de aceleraciones continentales

Para las fuentes continentales superficiales se han utilizado la ley de atenuaci aceleraciones propuesta por R. McGuire (1974). Esta ley de atenuaciones fue deducida costa Oeste de los Estados Unidos, estando asociada a las fallas continentales y su exp es:

$$a = 472 \times 10^{0.28 \text{ Ms}} (\text{R}+25)^{-1.3}$$

que expresada en forma logarítmica resulta:

 $\ln a = 6.156 + 0.64 M_s - 1.30 \ln (R+25)$

3.5. Efectos de la geología local

Es ampliamente conocido que las condiciones locales de sitio es uno de los princ factores responsables de los daños sufridos por las edificaciones durante los sismos se La amplificación sísmica es un efecto de las condiciones locales de sitio y es fuerte dependiente de las condiciones geológicas y topográficas.

Para determinar las características dinámicas del terreno se han realizado microtrepida y evaluaciones de amplificación sísmica (figura N°2) en los sectores más críticos información ha sido incorporada a un sistema de información geográfica y procesad elaborar la microzonificación geotécnica sísmica de los 42 distritos analizados. La figu muestra la zonificación geotécnica-sísmica de Lima y Callao considerada en este estudi

Figura N°3. Zonificación geotécnica sísmica de 42 distritos de Lima y Callao (CISMID, 20
3.6. Cálculo de peligro sísmico

Una vez conocidas la sismicidad de las fuentes, los patrones de atenuación de las generadas en cada una de ellas, y los efectos de la geología local, puede calcularse el j sísmico considerando la suma de los efectos de la totalidad de las fuentes sísmica distancia entre cada fuente y el sitio donde se encuentra la estructura. El peligro sísm expresado en términos de las tasas de excedencia de intensidades es:

$$\boldsymbol{\textit{u}}(a \mid \boldsymbol{R}_{o}, p) = \sum_{n=1}^{n=N} \int_{Mo}^{Mu} - \frac{\partial \boldsymbol{\textit{I}}}{\partial M} P_{r}(A > a \mid M, \boldsymbol{R}_{o}) dM$$

donde la sumatoria abarca la totalidad de las fuentes sísmicas N y $P_r(A>a|M,R_i)$ probabilidad de que la intensidad exceda un cierto valor, dadas la magnitud del sismo I distancia entre la i-ésima fuente y el sitio Ri. Las funciones $\lambda_i(M)$ son las tasas de act de las fuentes sísmicas. La integral se realiza desde M_o hasta M_u , lo que indica que se to cuenta, para cada fuente sísmica, la contribución de todas las magnitudes (Ordaz et al, Ordaz, 1999).

En vista de que se supone que, dadas la magnitud y la distancia, la intensidad distribución lognormal, la probabilidad $Pr(A>a|M,R_i)$ se calcula de la siguiente manera:

$$\Pr(A > a \mid M, Ro) = f\left(\frac{1}{\boldsymbol{s}_{Lna}} \ln \frac{E(A \mid M, R_i)}{a}\right)$$

siendo $\phi(.)$ la distribución normal estándar, $E(A|M,R_i)$ el valor medio del logaritmo intensidad (dado por la ley de atenuación correspondiente) y σ_{Lna} su correspon desviación estándar.

El peligro sísmico se expresa, entonces, en términos de la tasa de excedencia de valores de intensidad sísmica (figura N°4). Como se ha indicado, en este caso la intensidad sísmi se mide con las ordenadas del espectro de respuesta de seudoaceleraciones para 5 amortiguamiento crítico y el periodo natural de vibración de la edificación de interés T. El módulo para el cálculo del peligro sísmico se muestra en la figura N°5.

Figura Nº4. Tasas de excedencia de aceleraciones máximas para Lima (CISMID, 2003).

Figura N°5. Diagrama de flujo para el cálculo del peligro sísmico (CISMID, 2003).

4. Vulnerabilidad estructural

La vulnerabilidad estructural es la relación entre la intensidad sísmica y el nivel de daño. E enfoque la intensidad sísmica se mide con la aceleración espectral. El nivel de daño se estimar tomando la distorsión de entrepiso, el cual se calcula como el desplazamiento re entre dos niveles contiguos, dividido entre la altura del piso. Existe un número importa estudios que concluyen que dicho parámetro de la respuesta estructural presenta la correlación con el daño estructural registrado (Bertero et al., 1991; 1992; Moehle, 1996; Mi 1997; Priestley, 1997; Sozen, 1997). Contrario a la mayoría de sistemas que basan la estir del daño en la intensidad de Mercalli Modificada, el método que se emplea está basado parámetro que presenta una excelente correlación con el daño producido por la acción de sintensos. A partir de la aceleración espectral, es posible determinar la máxima distors entrepiso con la siguiente expresión:

$$\boldsymbol{g}_{i} = \frac{\boldsymbol{b}_{1}\boldsymbol{b}_{2}\boldsymbol{b}_{3}\boldsymbol{b}_{4}(\boldsymbol{h}N^{r})^{2}}{4\boldsymbol{p}^{2}Nh}S_{a}(T)$$

donde: β_1 = Es la relación entre el máximo desplazamiento lateral en el nivel superior estructura y el desplazamiento espectral, considerando un modelo de comportamiento el lineal. Este factor depende del tipo estructural y del número de pisos de la estructura.

 β_2 = Describe la relación entre la máxima distorsión de entrepiso y la distorsión global estructura, que se define como el máximo desplazamiento lateral en la azotea dividido altura total. β_2 depende del grado de participación de las deformaciones laterales de c flexión, y del tipo estructural.

Figura N°6. Curvas de β_1 y β_2 vs. el número de pisos para edificaciones de albañilería (CIS 2003).

 β_3 = Expresa la relación entre el máximo desplazamiento lateral del modelo de comportal inelástico, y el desplazamiento máximo del modelo elástico lineal. Este factor depende demanda de ductilidad al desplazamiento, el periodo fundamental de vibración de la estruc el tipo de suelo que la soporta.

 β 4 = Es la relación entre los factores β 2 elástico e inelástico. Este factor tiene en cuenta distribución de la carga lateral con la altura es diferente en el modelo elástico y en el inel En el caso de comportamiento inelástico se produce una gran concentración de la fuerza.

$$b_4 = 1 + \frac{m}{30} + \frac{N}{200}$$

donde: N = es el número de pisos.

 μ = es la ductilidad de demanda de la estructura.

h = es la altura de cada piso de la estructura.

 $S_a(T)$ = es la aceleración espectral, que depende del periodo fundamental de vibraci amortiguamiento de la estructura y la amenaza sísmica en el sitio.

Figura N°7: Curvas β_{3} y β_{4} vs. número de pisos para edificaciones de albañilería (CISMID, 20

Estos factores dependen de la ubicación de la estructura, el tipo estructural, el tipo de sue año de construcción. Tienen en cuenta el hecho de que la rigidez lateral de las estru localizadas en zonas de alta sismicidad es mayor que el de estructuras ubicadas en zonas c sismicidad. También consideran que las estructuras construidas sobre suelos blandos so flexibles que las construidas en suelos firmes debido a la flexibilidad de la cimentación. parámetros han sido calibrados con modelos analíticos, medidas experimentales y dife consideraciones siguiendo los requerimientos que se presentan en las normas.

Una vez que se determina la máxima distorsión de entrepiso de la estructura, su vulneral puede ser incrementada por varios factores tales como: irregularidades en planta o en elev golpeteo con edificaciones vecinas, daños previos no reparados, columnas cortas, etc.

El valor esperado del daño de la estructura, dado un valor de distorsión máxima de entrep calcula de la siguiente forma:

$$E(\beta|\gamma_i) = 1 - \exp\left[\ln 0.5\left(\frac{\gamma_i}{\gamma_o}\right)\right]$$

donde β es la pérdida bruta, γ_0 y ϵ son parámetros de vulnerabilidad estructural que dep del sistema estructural y la fecha de construcción, y E(.) es el valor esperado. Nótese qu definición, β es la proporción entre el costo de reparación y el costo total, y su valor está (y 1.

El módulo para el cálculo de la vulnerabilidad estructural se muestra en la figura N°8.

Figura N°8. Diagrama de flujo para el cálculo de la vulnerabilidad estructural (CISMID, 2003

5. Cálculo de la pérdida máxima probable (PML)

La pérdida máxima probable (PML) de una cartera de edificaciones es un estimador del t de las pérdidas máximas que sería razonable esperar en dicha cartera durante un peric exposición sísmica. Se utiliza como dato fundamental para determinar el tamaño de las re que la compañía de seguros debería mantener. En este modelo se define como la p estimada que ocurriría para un periodo de retorno determinado. Por lo tanto, es necesario c las tasas de excedencia de las pérdidas netas del portafolio, β (PN). Si en la j-ésima fue genera un sismo, la pérdida neta para el portafolio será:

$$P_{Nj} = \sum_{i} V_{i} \boldsymbol{b}_{Nji}$$

donde V_i es el valor de la i-ésima estructura, β_{Nij} es la pérdida neta en la estructura i, si un con las características determinadas ocurre en la fuente j, y la sumatoria se hace para inclui las edificaciones de la cartera.

En este modelo se asume que la cantidad $P_{Nj} / \sum_i V_i$ también se distribuye como una vi aleatoria Beta. Así el valor esperado de P_{Nj} se puede calcular fácilmente como sigue:

$$E(P_{Nj}) = \sum_{i} V_{i} E(\boldsymbol{b}_{Nji} | \boldsymbol{g}_{ij})$$

donde γ_{ij} es la máxima deriva de entrepiso experimentada por la estructura i si un sisi magnitud conocida se genera en la fuente j. Sin embargo, para calcular la varianza de P_{Nj}, s tener en cuenta la correlación existente entre los diferentes tipos de pérdidas que se p generar tanto en la estructura como en los contenidos de la misma. Una vez que se con valor esperado y la varianza de P_{Nj}, las tasas de excedencia de P_N se pueden calcular siguiente manera (Ordaz et al, 1998; Ordaz, 1999):

$$\boldsymbol{m}(P_N) = \sum_{j} \int_{M_0}^{M_u} - \frac{d\boldsymbol{I}_j(M)}{dM} Pr(P_{Nj} > P_N | M, fuente_i) dM$$

donde $\lambda_j(M)$ es la tasa de excedencia de la magnitud M en la fuente j, y la sumatoria ti cuenta los efectos de todas las fuentes sísmicas. Una vez realizados estos cálculos se determinar el PML para cada caso.

La figura N°9 muestra el módulo para el cálculo del riesgo sísmico. Finalmente, la figura muestra la metodología integrada desarrollada por el CISMID para la estimación de la p máxima probable PML.

Figura N°9. Diagrama de flujo para el calculo del riesgo sísmico (CISMID, 2003).

Figura N°10. Metodología integrada desarrollada para la estimación del PML (CISMID, 20036. Base de datos de la cartera asegurada

Para este estudio se **h** utilizado la cartera de seguros contra sismo proporcionada _I Asociación Peruana de Empresas de Seguros (APESEG). El número total de pólizas de asegurados asciende a 9778 de las cuales se han utilizado para la estimación del PML 5402 la cartera en estudio ha sido centralizada en un Sistema de Información Geográfica (SIG) fin de incorporar toda la información necesaria para la estimación de la pérdida máxima pr (PML). En forma de ejemplo demostrativo, se muestra la ubicación de bienes asegurados distrito de Chorrillos (Figura 15).

Figura 15. Ubicación de bienes asegurados en el distrito de Chorrillos (CISMID, 2004)

A continuación, la Tabla 1 muestra el número de pólizas ubicadas que resumen el tratamie la información:

ΕΤΑΡΑ	POLIZA	GIS	GIS/POLIZA	FICHAS	DIFASEG	NOUBI	FICHAS S/I	TOT_UBI
10Dist2002								
- Fase I	4500	3206	71%	2967			59	2908
10Dist2002								
- Fase II	1294	441	34%	382	61	64	57	322
32Dist2003								
- Fase II	3984	2799	70%	2456	320	195	409	2172
	9778	6446	66%	5805	381	259	525	5402

Tabla 1. Número de Pólizas Ubicadas.

En las figuras 16 a 19 se presentan el análisis de variables de las edificaciones aseg relevadas. En cuanto a la estructuración, el tipo M2R (albañilería reforzada) es el más uti entre los bienes asegurados en estudio, mientras que en segundo lugar se encuentra el ti (sistema aporticado). En relación al número de pisos, el mayor porcentaje de edificacio encuentra en dos pisos, siendo 34 el número máximo de pisos encontrados en la mues observa claramente que las estructuras de 1, 2 y 3 pisos constituyen más del 70% de la c Respecto a la conservación general, un mayor número de edificaciones presenta un esta conservación bueno. En cuanto al año de construcción, existen edificaciones construidas 1860, aunque el mayor número de edificaciones fueron construidas desde inicios de los añ hasta fines de los años 2000. Hay que resaltar, que no se ha podido calcular adecuadama año de construcción de 1234 edificaciones.

Figura 16. Gráfico de las edificaciones evaluadas vs tipo de estructura, todos los distritos, b asegurados.

Figura 17. Gráfico de las edificaciones evaluadas vs número de pisos, todos los distritos, bi asegurados

EDIFICACIONES POR CONSERVACION

Figura 18. Gráfico de las edificaciones evaluadas vs. estado de conservación, todos los dist bienes asegurados.

Figura 19. Gráfico de las edificaciones evaluadas vs. año de construcción, todos los distritos, asegurados

7. Resultados de cálculo de la pérdida máxima probable

Producto del desarrollo de una tecnología propia se ha establecido la curva de la pérdida m probable (PML) considerando los resultados de los módulos de peligro sísmico, vulneral estructural y riesgo sísmico obteniéndose en forma computarizada para los 42 distritos cartera estudiada.

Es de esperar, que las compañías de seguros reserven un monto igual al PML o en caso co deberán reasegurar dicho monto.

8. Conclusiones y recomendaciones

Se puede formular las siguientes conclusiones y recomendaciones:

- Se ha establecido las características geotécnicas del área y para cada distrito, considera finalmente 5 zonas geotécnica-sísmica.
- Se ha considerado 5 tipologías de construcción que son las siguientes: Mampostería, cc armado, adobe-quincha, acero e industriales-comerciales.
- Para la diagnosis se ha establecido una metodología que ha permitido determinar para tipo de estructura los valores de *b*₁, *b*₂, *b*₃ y *b*₄ que son los factores de disto considerando las diferentes implicaciones de altura, máxima distorsión entre deformaci por demanda de ductilidad.
- La realización del trabajo de campo ha sido imprescindible para la determinacivulnerabilidad de las edificaciones, con la finalidad de conocer área, altura, antigi estado actual, restricciones, densidad de muros y comprobar la veracidad y vigencia información catastral.
- El número de pólizas recibidas para los 42 distritos fue de 9,778, se ubicaron en la (6,446 pólizas (66%) y posteriormente fueron relevadas en campo 5,402 pólizas (55%).
- Se ha desarrollado un programa de cómputo para evaluar el riesgo sísmico con el cua establecido la curva del PML considerando los módulos de peligro sísmico, vulneral estructural y riesgo sísmico. El procedimiento seguido en la configuración del PM producto de una metodología propia, con criterio comparativo a nivel internacional.
- Se ha obtenido una curva de PML con diferentes periodos de retorno. En general, no e un criterio estándar para medir el PML. Sin embargo, es recomendable tomar como refe un periodo de retorno comprendido entre 500 y 2000 años.

Agradecimientos

Los autores agradecen el apoyo brindado por el Centro Peruano Japonés de Investiga Sísmicas y Mitigación de Desastres (CISMID) y todo el personal técnico y administrati Proyecto APESEG/CISMID-EVR-LYC, así como a la Asociación Peruana de Empres Seguros (APESEG) y a la Superintendencia de Banca y Seguros (SBS) del Perú p realización de este estudio.

Referencias

- Bertero, V.V., Anderson, J.C., Krawinkler, H., and Miranda, E. (1991). "Design Guic for Ductility and Drift Limits: Review of the State-of-the-Practice and State-of-the-Ductility and Drift-Based Earthquake-Resistant Design of Buildings", Repor UCB/EERC-91/15, Earthquake Engineering Research Center, University of Calif Berkeley, California.
- Casaverde L. y Vargas J. (1980). "Zonificación Sísmica del Perú", II Sen Latinoamericano de Ingeniería Sismo-Resistente, Organización de Estados America Pontificia Universidad Católica del Perú, Lima, Perú.
- Castillo J. (1993). "Peligro Sísmico en el Perú", Tesis de Grado, Facultad de Ingeniería Universidad Nacional de Ingeniería, Lima, Perú.
- 4. CISMID (2003). "Estudio de Vulnerabilidad y Riesgo Sísmico de la Gran Lima y (APESEG/CISMID-EVR-LYC-Fase I". Asociación Peruana de Empresas de Se APESEG, Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Des CISMID, Lima, Perú.
- CISMID (2004). "Estudio de Vulnerabilidad y Riesgo Sísmico de Lima y (APESEG/CISMID-EVR-LYC-Informe Final". Asociación Peruana de Empresas de Se APESEG, Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Des CISMID, Lima, Perú.
- 6. Dorbath L., Cisternas, A y Dorbath, C. (1990). "Assessment of the size of large and historical earthquakes in Peru", Bulletin of the Seismological Society of America.
- McGuire R. (1974). "Seismic Structural Response Risk Analysis Incorporating Response Regressions on Earthquake Magnitude and Distance", MIT Report R Cambridge, Mass.

- Miranda, E. (1997). "Estimation of Maximum Interstory Drift Demands in Displac Based Design". Seismic design Methodologies for the Next Generation of Code Krawinkler and P. Fajfar editor, Balkema.
- 9. Moehle, J.P. (1996). "*Displacement-Based Seismic Design Criteria*". Proceedings Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico.
- 10. Olarte J., Zavala C., Aguilar Z., Vásquez G., Escobar R. y Romaní S. (2003). "Estimac la pérdida máxima probable PML en 10 distritos de la Gran Lima y Callao: Aplicacio industria aseguradora peruana". XIV Congreso Nacional de Ingeniería Civil, Iq Colegio de Ingenieros del Perú-Consejo Departamental de Loreto-Capítulo de Inge Civiles.
- 11. Ordaz, M., Miranda, E., Reinoso, E., Pérez-Rocha, Luis E. (1998). "Seismic Loss Estin Model For México City".
- 12. Ordaz, M. (1999). "Metodología para la Evaluación del Riesgo Sísmico enfocado gerencia de Seguros por Terremoto".
- Priestley, M. (1997). "Displacement-Based Seismic Assessment of Reinforced Co. Buildings". Journal of Earthquake Engineering, Vol. 1 No. 1, pp. 157-192.
- 14. Richter C. F. (1958). "Elementary Seismology". W.H. Freeman Co., San Francisco.
- 15. Silgado E. (1978). "Historia de los sismos más notables ocurridos en el Perú (1513-1 Instituto de Geología y Minería, Boletín N°3, Serie C, Geodinámica e Ingeniería Geo Lima, Perú.
- Sozen, M.A. (1997). "Drift-Driven Design for Earthquake Resistance of Rein Concrete". Proc. EERC-CUREe Symposium in Honor of Vitelmo V. Bertero, Ber California.