Infrastructure Inventory Compilation Using Single High-Resolution Satellite Images

Pooya Sarabandi¹, Beverly Adams², Anne S. Kiremidjian¹, Ronald T. Eguchi³

> ¹Stanford University, CA, USA ²ImageCat Inc., London, UK ³ImageCat Inc., CA,USA

ImageCat, Inc.

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Overview

- Objective
- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases
- Why Remote Sensing?
- Proposed Algorithm
 - Sensor Models
 - Rational Function Model
 - Image Acquisition Geometry
 - 3D Reconstruction Algorithm
 - Measurement Error
- Implementation (MIHEA)
- Results and Calibration

Objective

To develop a semi-automated method for spatial and structural information extraction from single satellite images to be used in building inventories

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Overview

- Objective
- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases
- Why Remote Sensing?
- Proposed Algorithm
 - Sensor Models
 - Rational Function Model
 - Image Acquisition Geometry
 - 3D Reconstruction Algorithm
 - Measurement Error
- Implementation (MIHEA)
 - Results and Calibration

Building Inventory Data Structure

- Address or Lon/Lat
- Age or year of construction
- Height or number of stories
- Footprint Area
- Structural type
- Occupancy type
- Roof type
- Cladding

ImageCat, Inc.

- Shape irregularity
- Height irregularity

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Overview

- Objective
- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases.
- Why Remote Sensing?
- Proposed Algorithm
 - Sensor Models
 - Rational Function Model
 - Image Acquisition Geometry
 - 3D Reconstruction Algorithm
 - Measurement Error
- Implementation (MIHEA)
 - Results and Calibration

Why Building Inventory?

Vital information to:

- Decision Makers
- Urban Planners
- Disaster Response
- Loss Estimation
- Portfolio management

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Overview

Objective

ImageCat, Inc.

- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases.
- Why Remote Sensing?
- Proposed Algorithm
- Implementation (MIHEA)
- Results and Calibration

Available Inventory Databases

Sources:

- Tax Assessors files
- Government files (e.g. FEMA, GSA ...)
- Sanborn maps (US only)
- Real estate files
- Insurance portfolios

Problems:

- Not always available in digital format
- Incomplete for many attributes
- Unavailable for many regions (e.g. developing countries)
- Updating only some information

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Overview

Objective

ImageCat, Inc.

- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases
- Why Remote Sensing?
- Proposed Algorithm
- Implementation (MIHEA)
- Results and Calibration

Why Remote Sensing?

- Remote and hard to reach locations
- Digital formats
- Can augment missing information
- Large Coverage
- Frequent updates
- Eventually will be more cost effective than land survey

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Building Inventory Data Structure

- Address or Lon/Lat *
- Age or year of construction
- Height or number of stories*
- Footprint Area*
- Structural type
- Occupancy type
- Roof type*
- Cladding*
- Shape irregularity*
- Height irregularity*
- * information that can be obtained from imagery

Image<mark>C</mark>at, Inc.

Overview

- Objective
- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases.
- Why Remote Sensing?
- Proposed Algorithm
 - Sensor Models
 - Rational Function Model
 - Image Acquisition Geometry
 - 3D Reconstruction Algorithm
 - Measurement Error

ImageCat, Inc.

- Implementation (MIHEA)
- Results and Calibration

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Sensor Models

Physical Sensor Model

- Sensor dependent
- Parameters have physical significant
- Parameters are statistically uncorrelated
- Rigorous and not always available to users

Generalized Sensor Model

Generic

- Sensor independent
- Real-time computation

Rational Function Models (RFMs)

 Describes the image-toground relationships.

 Generalization of polynomial models (ratio of two polynomial functions)

 $r_n = \frac{f_1(\phi_n, \lambda_n, h_n)}{f_2(\phi_n, \lambda_n, h_n)}$ $c_n = \frac{f_3(\phi_n, \lambda_n, h_n)}{f_4(\phi_n, \lambda_n, h_n)}$

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

RFMs cont'd

Rational Polynomial Coefficients (RPCs)

$$f = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} a_{ijk} \phi^{i} \lambda^{j} h^{k}$$

$$\begin{split} f &= a_1 + a_2 \lambda + a_3 \phi + a_4 h + a_5 \lambda \phi + \\ a_6 \lambda h + a_7 \phi h + a_8 \lambda^2 + a_9 \phi^2 + a_{10} h^2 + \\ a_{11} \phi \lambda h + a_{12} \lambda^3 + a_{13} \lambda \phi^2 + a_{14} \lambda h^2 + \\ a_{15} \lambda^2 \phi + a_{16} \phi^3 + a_{17} \phi h^2 + a_{18} \lambda^2 h + \\ a_{19} \phi^2 h + a_{20} h^3 \end{split}$$

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

ImageCat, Inc.

Image Acquisition Geometry

Approximate image acquisition geometry and satellite orientation can be described by sensor's <u>elevation</u> and <u>azimuth</u> angles

Height Metrology

- Image coordinates for the corner of a building at ground level (*r_{ground}*, *c_{ground}*), and its corresponding roof-point coordinates (*r_{roof}*, *c_{roof}*)
- Sensor's collection azimuth angle

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

Image<mark>C</mark>at, Inc.

3D Reconstruction Algorithm

$r_{roof} = \frac{f_1(\phi, \lambda, h_2)}{f_2(\phi, \lambda, h_2)}$ $c_{roof} = \frac{f_3(\phi, \lambda, h_2)}{f_4(\phi, \lambda, h_2)}$ $r_{ground} = \frac{f_1(\phi, \lambda, h_1)}{f_2(\phi, \lambda, h_1)}$ H $c_{ground} = \frac{f_1(\phi, \lambda, h_1)}{f_4(\phi, \lambda, h_1)}$ H $c_{ground} = \frac{f_3(\phi, \lambda, h_1)}{f_4(\phi, \lambda, h_1)}$ $r_{ground} = \frac{f_3(\phi, \lambda, h_1)}{f_4(\phi, \lambda, h_1)}$ $r_{ground} = \frac{f_3(\phi, \lambda, h_1)}{f_4(\phi, \lambda, h_1)}$	
3 rd International Workshop on Remote Sensing Technologies and Disaster Response (Cat, Inc. Chiba, Japan, September 12 ~ 13, 2005	

3D Reconstruction Algorithm - cont'd

- Homogeneous
- Nonlinear

Im

Over-determined

Solution: Trust-Region Dogleg Method

 $\begin{aligned} \frac{f_1(\phi,\lambda,h_1)}{f_2(\phi,\lambda,h_1)} &- r_g = 0\\ \frac{f_3(\phi,\lambda,h_1)}{f_4(\phi,\lambda,h_1)} &- c_g = 0\\ \frac{f_1(\phi,\lambda,h_2)}{f_2(\phi,\lambda,h_2)} &- r_r = 0\\ \frac{f_3(\phi,\lambda,h_2)}{f_4(\phi,\lambda,h_2)} &- c_r = 0\\ (h_2 - h_1) - H = 0 \end{aligned}$

Starting point for the iterative solution: by linearizing RFM $a_1+a_2\lambda+a_3\theta+a_4\theta$

$r_{g} = \frac{a_{1} + a_{2}\lambda + a_{3}\varphi + a_{4}h_{1}}{b_{1} + b_{2}\lambda + b_{3}\phi + b_{4}h_{1}} + \varepsilon_{1}, c_{g} =$	$=\frac{c_1+c_2\lambda+c_3\varphi}{d_1+d_2\lambda+d_3\varphi}$	$\frac{1}{d_4h_1} + \varepsilon_2$				
$r_r = \frac{a_1 + a_2\lambda + a_3\phi + a_4h_2}{b_1 + b_2\lambda + b_3\phi + b_4h_2} + \varepsilon_3, c_r =$	$=\frac{c_1+c_2\lambda+c_3\phi}{d_1+d_2\lambda+d_3\phi}$	$\frac{+c_4h_2}{+d_4h_2} + \varepsilon_4$				
$A \cdot \mathbf{x_0} = b$	$A = \begin{bmatrix} r_g b_2 - a_2 \\ c_g d_2 - d_2 \\ r_r b_2 - a_2 \\ c_r d_2 - d_2 \end{bmatrix}$	$r_g b_3 - a_3$ $c_g d_3 - d_3$ $r_r b_3 - a_3$ $c_r d_3 - d_3$	$r_g b_3 - a_3$ $c_g d_3 - d_3$ 0 0	$\begin{bmatrix} 0\\0\\r_rb_3-a_3\\c_rd_3-d_3 \end{bmatrix}, \mathbf{x_0}$	$= egin{bmatrix} \phi^* \ \lambda^* \ h_1^* \ h_2^* \end{bmatrix}, \ b$	$= \begin{bmatrix} a_1 - r_g b_1 \\ c_1 - c_g d_1 \\ a_1 - r_r b_1 \\ c_1 - c_r d_1 \end{bmatrix}$

Measurement Error

- Image dependent (shadows and obstacles along the line of sight)
- User (operator) dependent

Overview

- Objective
- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases.
- Why Remote Sensing?
- Proposed Algorithm
 - Sensor Models
 - Rational Function Model
 - Image Acquisition Geometry
 - 3D Reconstruction Algorithm
 - Measurement Error
 - Implementation (MIHEA)
 - Results and Calibration

MIHEA (Mono-Image Height Extraction Algorithm)

_ 8 ×

Selection Tool

Object S

Top Point

Ground Poi

Roof Point: End Selectio

Ru

3D Di

Image Processing Package

 Compatible with IKONOS and QuickBird camera models

Export results to database

ImageCat, Inc.

Overview

- Objective
- Building Inventory Data Structure
- Why Building Inventory?
- Available Building Inventory Databases.
- Why Remote Sensing?
- Proposed Algorithm
 - Sensor Models
 - Rational Function Model
 - Image Acquisition Geometry
 - 3D Reconstruction Algorithm
 - Measurement Error
 - Implementation (MIHEA)
 - Results and Calibration

3rd International Workshop on Remote Sensing Technologies and Disaster Response Chiba, Japan, September 12 ~ 13, 2005

ImageCat, Inc.

ImageCat, Inc.

Chiba, Japan, September 12 ~ 13, 2005

Questions?

