Characteristics of Remote Sensing Images for the 2004 Niigata-ken Chuetsu Earthquake - Application of SAR imagery for earthquake damage detection -

Masashi Matsuoka¹, Kei Horie¹, Hiroshi Ohkura² and Fumio Yamazaki³

¹ EDM-NIED, ² NIED, ³ Chiba Univ.

Objective and Contents

- SAR image characteristics of affected areas due to the 2004 Niigata-ken Chuetsu earthquake and damage detection.
- 1. Application of our damage detection method developed from the Kobe and Bam studies, to Niigata area, using a pair of pre- and post-earthquake images.
- 2. An attempt by using two pre-earthquake and one postearthquake images, to identify smaller building-damage areas compared to the above method.

Satellite SAR

SAR: Synthetic Aperture Radar (Active Microwave Sensor)

Transmitting a microwave signal, then receiving its reflection (amplitude, phase) from objects on earth's surface

SAR Images

Amplitude Image Backscattering Coefficient [dB] Phase Image $-\pi \sim \pi$ [rad]

Niigata Chuetsu Earthquake

October 23, 2004 Mw 6.6

The area of this study

Radarsat/Fine, resolution:9m

Oct. 1, 2004

damage

Oct. 25, 2004

5

Building-Damage Distribution from Field Surveys Schematic

Quick survey result (Yoshimi, 2004)

Damage Detection by z Value

- A model to estimate damaged areas: $z_1 = -2.140 \ d - 12.465 \ r + 4.183$ $z_2 = 2.140 \ d - 12.465 \ r + 4.183$ $z = \max(z_1, z_2)$
 - *d* : difference in backscattering coefficient(dB) (after – before)
 - r : correlation coefficient

Result of Damage Detection for Mid-Niigata Earthquake

• Low *z*-value areas are spreading

Distribution of *z*-value

Results of Damage Detection for Destructive Earthquakes

• High *z*-value in severely damage areas

Distribution of *z*-value for 1995 Kobe earthquake (ERS)

Distribution of *z*-value for 2003 Bam earthquake (Envisat)

10

Comparison with Actual Damage

- The trend of *z*-value distribution is not in good agreement to actual damage distribution.
- In the result of the Radarsat images of Mid-Niigata, it was not possible to identify any significant distribution of damaged buildings.

Distribution of *z*-value (Scale change)

Actual damage distribution

Observation from the Result of Damage Detection (1)

- From field survey reports, the severely-damaged building areas of Niigata earthquake and its distribution were rather small in comparison with those by the Kobe and Bam earthquakes.
- The damage detection method can be applicable to detect the relatively large areas with severely-damage ratio more than approx. 30%.
- The main reason is low signal noise ratio in the area of smaller building-damage ratio.

Observation from the Result of Damage Detection (2)

- The noise is likely to be caused by SAR system itself, observation conditions, temporal changes in the earth's surface, etc.
- To minimize the above effects, the understanding of the effect of system noise and stationary temporal surface changes for the indices such as *z*-value and correlation coefficient is needed using a pair of two pre-earthquake images.
- Therefore, we prepared one more pre-earthquake image (Sept. 7, 2004).

Dataset of SAR Images

Calculating Variations

• To minimize the effect of system noise and stationary temporal surface changes, the variations of the indices (correlation, complex coherence, and *z*-value) were calculated by the following equations,

Correlation coefficient ratio: $(r_{ab} + 1) / (r_{bb} + 1)$

Coherence ratio: ρ_{ab} / ρ_{bb}

Difference in *z*-value: $z_{ab} - z_{bb}$

ab: after&before, bb: before&before

15

GIS-based Building Damage Database

• Overlaying SAR image on GIS database, the relationship between the variations of the indices and damage level.

Damage Level vs. Variation Index

collapsed building ratio of 0-1, 1-5, 5-10, 10-15, and 15-30%, respectively.

• Though the standard deviations for all indices, according to the variance analysis, the correlation coefficient ratio is selected as a suitable index to reflect the building damage level.

Distribution of Correlation Coefficient Ratio (1)

Koshiji Vamaköshi Ojiya Horinouchi Kawaguchi Kawanishi Tokamachi

Actual damage distribution

Distribution of Correlation Coefficient Ratio (2)

Areas selected by correlation coefficient, from a pair of pre-event images, which is more than 0.7.

19

Distribution of Correlation Coefficient Ratio (3)

• Yamakoshi village (slope failures)

Distribution of CC Ratio

Geometric Distortion due to Side-looking SAR System

- Foreshortening
- Layover
- Shadowing

Conclusions

- We applied the damage detection method to the affected areas due to the 2004 Niigata-ken Chuetsu earthquake by using a pair of pre- and post-event Radarsat images.
- However, it was not possible to identify any significant distribution of damaged buildings. Because the building damage ratios were rather small.
- A new method to detect the areas of smaller building-damage ratios was proposed by calculating the ratio between the correlation coefficient from a pair of two pre-event images and that from a pair of pre- and post-event images.
- The results of the proposed method showed in relatively good agreement with actual damage survey reports.

