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ABSTRACT 
 
This paper introduces a methodological approach for rapidly obtaining spatial and 
structural information from a single high-resolution satellite image, using rational 
polynomial coefficients (RPCs) as a camera replacement model. Geometric information 
defining the sensor’s orientation is used in conjunction with the RPC projection model to 
generate an accurate digital elevation model (DEM). This paper describes how the 
location (longitude and latitude) and height of individual structures are extracted by 
measuring the image coordinates for the corner of a building at ground level and its 
corresponding roof-point coordinates, and using the relationship between image-space 
and object-space together with the sensor’s orientation. The paper proceeds to describe 
the implementation of this algorithm in the software package MIHEA (Mono-Image 
Height Extraction Algorithm), and presents the validation results for a QuickBird image 
of London using LiDAR coverage and independently derived survey data.  
 

INTRODUCTION 
 

Recent advances in high-resolution satellite imaging are extending the application of 
commercial images - such as those acquired by IKONOS, QuickBird and SPOT5 - to 
accurate 3D building modeling and geospatial information extraction. To support real-
time calculations and provide an easy-to-use sensor model, many commercial high-
resolution satellite image providers use Rational Function Model (RFM) as a replacement 
for their rigorous (physical) sensor model. RFM is a generalization of polynomial models 
that can be used to describe the image-to-ground relationship. RFM uses ratio of two 
polynomial functions to define the transformation between 3-dimensional object 
coordinates (latitude, longitude and height) and its corresponding 2-dimensinal image 
coordinates (row and column). For a given image, RFM can be expressed as: 
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where rn and cn are the row and column indices of pixels in the image, respectively; 
 φn, λn and hn are geodetic latitude, geodetic longitude and height above the ellipsoid, 
respectively.  
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This paper introduces a methodological approach to use a single satellite image and 
dynamic measurement to generate an accurate digital elevation model (DEM). In 
dynamic measurement mode, a pair of pixels - in the image- is selected such that they 
represent the corner of a building at ground level and its corresponding roof-point. 
 
 

METHODOLOGY 
 
The Rational Function Model  

 
Most of the commercial high-resolution sensors (i.e. IKONOS and QuickBird) use 

cubic RFM as a replacement for their camera models. The ratio of first-order terms in 
RFM usually compensates for distortions caused by optical projection, second-order 
terms can be used to correct for earth curvature, atmospheric refraction and lens 
distortion while third-order terms can model other unknown distortions [1]. 

Polynomials fi (i=1,2,3,4) have the general form of:        ∑∑∑
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which can be expressed as: 
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To determine longitude, latitude and height of a structure, one needs to measure 

image coordinates for corner of a building at ground level and its corresponding roof-
point coordinates. For each conjugate pair obtained in this dynamic measurement, the 
following set of equations is obtained: 
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where rground, cground, rroof and croof are the measured (normalized) image coordinates of a 
ground-point and its corresponding roof-point on the image (conjugate pair), 
respectively; φ, λ, h1 and h2 are the unknown (normalized) object space coordinates. 
 
 
Image Acquisition Geometry and Height Metrology 
 

Approximate image acquisition geometry and satellite orientation can be described by 
sensor’s elevation and azimuth angles. Sensor’s elevation angle is the angle form the 
horizon up to the satellite [2]. The projection of sensor’s line of sight to the area-of-
interest (AOI) onto the horizontal plane measured clockwise defines the sensor’s azimuth 
[2] as shown in Figures 1 and 2. 
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           Figure 1. Image Acquisition Geometry                     Figure 2. Image Acquisition Geometry in Polar 
                                                   Coordinate System (Azimuth = 37.5O, 
                   Elevation = 60O) 
 

By knowing a sensor’s collection azimuth (β) and measuring the image coordinates 
for the corner of a building at ground level, (rground, cground ), and its corresponding roof-
point coordinates, (rroof , croof ), it is possible to calculate height of a building through 
trigonometric relationship as described in Eq. 4 and shown in Figure 3.  
 

22*

*

)()(H

 
)cos(

H  H

roofgroundroofground ccrrGSD −+−×=

=
β                            (4) 

 
where GSD is ground sample distance at the viewing angle β. H is the physical height of 
a building and H* is the measured height of a building on the image plane.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Relationship between real height of a building and its measured height on the image plane 
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3D Reconstruction Algorithm 
 

A system of homogeneous nonlinear over-determined equations can be obtained by 
adding the geometric constraint for height, derived in Eq. 4, to the set of equations 
introduced in Eq. 3. The unknown variables are geodetic longitude, geodetic latitude, 
height of ground-point above the geoid and height of roof-point above the geoid, (φ , λ , 
h1, h2), as presented below: 
 

0)(

0 - 
),,(
),,(

0 -  
),,(
),,(

0 -  
),,(
),,(

 

0 -  
),,(
),,(

12

24

23

22

21

14

13

12

11

=−−

=

=

=

=

Hhh

c
hf
hf

r
hf
hf

c
hf
hf

r
hf
hf

r

r

g

g

λφ
λφ
λφ
λφ
λφ
λφ
λφ
λφ

                 (5) 

 
The above system of nonlinear equations can be solved using the Trust-Region 

Dogleg Method [3] & [4].  To do this, a linear system of equations is solved to find the 
search direction, and the trust-region techniques [5] are used to improve the robustness of 
the algorithm when the starting point is far from the solution or in cases where Jacobian 
of design matrix (Eq. 5) is singular. The starting point  xo = (φ∗ , λ∗ , h1

*, h2
*), used in the 

iterative solution of Eq. 5, can be obtained by linearizing Eq. 3 considering only the first-
order terms in the numerator and denominator as expressed in Eq. 6 and Eq. 7. Singular 
Value Decomposition (SVD) of matrix A can be used if A becomes singular. 
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where 
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Measurement Error 
 

The amount of error introduced by an operator in the process of selecting ground-
points and roof-points affects the accuracy of differential-height estimation in Eq. 4 and, 
therefore, the overall accuracy in determining longitude, latitude and height. In this 
section, only the direct effect of selection-error on height is introduced.  Figure 4 shows 
the relationship between roof-top selection-error and its corresponding error in height. 
Considering two independent measurements in determining the location of ground-point 
and roof-point, the differential-height error can be calculated as Eq. 8.  
 
 

PixelH σβσ ⋅⋅= )sec(2                          (8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Figure 4. Height estimation error                                Figure 5. Pixel selection-error   
 
 
 

Figure 5 shows the selection-error when instead of targeted pixel a neighboring pixel 
is selected. Table 1 summarizes the anticipated height error in IKONOS and QuickBird 
images for one pixel mismatch at ground-level and one pixel mismatch at roof-level. 
 
 
 

Table 1. Maximum anticipated height error for one pixel mismatch at ground-level and roof-level  
Sensor Altitude 

(Km) 
Off-Nadir 
(degree) 

Collection Azimuth 
( β - degrees) 

GSD @  
off-nadir 

σPixel 
(m) 

σH 
(m) 

IKONOS 
QuickBird 

681 
450 

26 
25 

64 
65 

1.0 m 
0.72 m 

1.41 
1.02 

4.56 
3.23 
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IMPLEMENTATION 
 

The 3D reconstruction algorithm introduced in previous sections is implemented in 
the image processing package MIHEA (Mono-Image Height Extraction Algorithm). 
Single high-resolution satellite images (i.e. IKONOS and QuickBird) and their camera 
model (RFM) can be directly imported into MIHEA. MIHEA provides a graphical user 
interface enabling user to interactively select a ground-point and its corresponding roof-
point as well as other rooftop points on a building. For each selected object (building) a 
set of spatial and structural attributes such as longitude, latitude, height, footprint, number 
of stories and total floor area of the structure are calculated. Figure 6 shows MIHEA’s 
graphical interface as well as a 3D model created by the program. Figure 7 shows a 3D 
model of city of London, digitized using MIHEA. 
 
 

  
Figure 6. Mon-Image Height Extraction Algorithm (MIHEA) and 3D model of London 

 

 
Figure 7.3D model of London created using MIHEA 
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RESULTS AND CALIBRATIONS 
 

MIHEA is used to construct a 3D model of the city of London (as it can be seen in 
Figure 7) from a Pansharpened QuickBird image, acquired on July 28, 2002, with 
collection elevation angle of 65.4o (off-nadir viewing angle of 24.6o). The height 
reconstruction results are compared to the LiDAR data as well as independently derived 
survey data. 23 buildings are selected from generated elevation model to be used to 
calibrate the model. Figure 8 shows the histogram of height distribution for the selected 
subset of buildings. Figures 9 and 10 show linear calibration functions derived using 23 
buildings from the test area. The RMS error in estimating height by MIHEA in 
comparison to LiDAR data is 2.67 meters whereas the RMS error in comparison to the 
independently derived survey data is 3.84 meters. The RMS error in estimating height in 
both cases is within the anticipated height error as it is shown in Table 1.  
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Figure 8.Histogram of height distribution for 23 buildings 

 

LiDAR vs. MIHEA
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Figure 9. Model Calibration: MIHEA vs. LiDAR data.  
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Survey Data vs. MIHEA
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Figure 10. Model Calibration: MIHEA vs. Survey Data 
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