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Lima City, Peru, is, like Japan, on the verge of a strike
by a massive earthquake. Building inventory data for
the city need to be created for earthquake damage es-
timation, so the city was subjected to the extraction
of spatial distribution of building age from Landsat
satellite time-series images and an assessing building
height from ALOS/PRISM images. Interband calcu-
lation of Landsat time-series images gives various in-
dices relevant to land covering. The transition of in-
dices was evaluated to clarify urban sprawl taking
place in the northern, southern, and eastern parts of
Lima City. Built-up area data were created for build-
ings by age. The height of large-scale mid-to-high-
rise buildings was extracted by applying spatial fil-
tering for a DSM (Digital Surface Model) generated
from stereovision PRISM images. As a result, build-
ings with a small square measure, color similar to that
of their surroundings, or complicated shapes turned
out to be difficult to detect.

Keywords: building inventory data, earthquake damage
estimation, urban sprawl, building height, landsat image,
ALOS/PRISM, Lima City

1. Introduction

In the assessing building damage caused by an earth-
quake, building inventory data for the target area need to
be provided in addition to the evaluation of possible earth-
quake ground motion and seismic building performance.
Building inventory data are usually created through field
surveys or visual interpretation using aerial photographs.
Such work requires great effort and cost. In Japan, de-
tailed building inventory data are usually provided and
utilized for earthquake damage estimation by central and
local governments.

In developing countries, however, rapid urban sprawl
has been taking place and building inventories thus need

to be provided. Building inventory data suitable to the
current situation are not sufficient, however, discouraging
proper earthquake damage evaluation. Peru, one of the
developing countries of interest here, is situated in an area
where an ocean floor plate subducts a trench near land,
similar to Japan, and a massive earthquake is predicted as
highly likely to occur. Although earthquake damage eval-
uation is an urgent need in effective disaster response and
disaster mitigation, it is, at present, based on insufficient
building inventory data.

The number and distribution of buildings damaged by a
possible earthquake are estimated by modeling the ground
condition and earthquake source, calculating earthquake
ground motion, calculating the damage rate and distri-
bution of earthquake ground motion calculated based on
building seismic performance, and multiplying the dam-
age rate by building inventory data information from the
target area. Accordingly, building inventory data are im-
portant for conducting damage estimation, with informa-
tion such as structure type, age, and the number of build-
ing stories as attributes. Information on age is required be-
cause older buildings are likely to have been constructed
under older seismic standards that may not require suf-
ficient seismic capability. Even with the same structure
type, low-rise buildings and mid-to-high-rise buildings
have different deformation performance and seismic ca-
pability, and thus information on the number of building
stories is important.

Regarding building inventory data, building informa-
tion on age and the story number are gathered efficiently
by using remote sensing data from satellites. In recent
years, satellite image performance has improved enough
to allow images with a ground resolution of 1 meter or less
to be acquired, thereby enabling assessment on a building-
by-building basis. With the intention of creating building
inventory data in Metro Manila, for example, Miura et
al. (2006) have proposed a method in which mid-to-high-
rise buildings are automatically detected using building
shadows appearing in IKONOS satellite images and ex-
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Table 1. Characteristics of Landsat images used in this study.

Satellite Sensor Date Num. of Bands Resolution

Landsat-5 Thematic Mapper (TM) 1987/3/5 7 bands 30 m
Landsat-5 Thematic Mapper (TM) 1998/5/6 7 bands 30 m
Landsat-5 Thematic Mapper (TM) 2002/1/17 7 bands 30 m
Landsat-5 Thematic Mapper (TM) 2006/5/12 7 bands 30 m

Fig. 1. Landsat images observed in 1987, 1998, 2002 and 2006.

isting building inventory data are updated [1]. Another
attempt in which urban sprawl transition in Metro Manila
is assessed was based on the land cover classification of
time-series Landsat imagery and urban area distribution
by age was assessed overall [2]. An assessment of build-

ing height has been conducted by Shaker et al. (2011)
to stereo-pair images from the IKONOS satellite where
high-density residential areas in Cairo, Egypt, were ob-
served [3].

As seen above, various remote sensing images have
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been used to create building inventory data. None of
them have been applied, however, to the situation in Peru.
Our study in this paper, targeting Lima City, Peru, at-
tempts as a first step to create building inventory data
necessary for earthquake damage estimation, extracting
the spatial distribution of building age from Landsat im-
agery and an assessing building height from stereovision
of ALOS/PRISM imagery.

2. Data
This study assesses built-up area distribution by age us-

ing satellite Landsat-TM (Thematic Mapper) image data,
which is a rich archive of past image data. We searched
first for good cloudless image data on Lima and found
oldest to have been observed in 1987. In order to get data
by age, we then searched for data on images shot 10 and
20 years after that and found data on cloudless images
shot in 1998 and 2006. We decided to use images ob-
served in those three different years for this study (Table 1
and Fig. 1). As presented in Fig. 1, however, the 2006
image include clouds covering the western and southern
coasts of Lima, so we used an auxiliary image observed
in 2002 for the area covered with clouds. The image
data includes seven bands in the visible to near-infrared
or thermal-infrared range. The spatial resolution of im-
ages is 30 m, except for thermal infrared image, which is
120 m.

Building height was assessed using data from “Daichi,”
an ALOS satellite launched by Japan on January 24, 2006.
ALOS has three sensors assigned to terrestrial observation
as their main mission. One is the PRISM (Panchromatic
Remote-sensing Instrument for Stereo Mapping) that, as
the name suggests, creates and updates maps equivalent
to 1/25,000 and ground resolution of 2.5 m. For the as-
sessing building height discussed in Section 4, we used
a PRISM image of Lima taken on October 15, 2008
(Fig. 2). The selected image was shot under the best
observation conditions but there is still a cloud near the
coastline and the situation of the surface under the cloud
cannot be acquired.

As an existing basic geospatial map of Lima, we used
a land-use map with a scale of 1/25,000 created in 2004.
This map presents built-up areas in orange and vegeta-
tion areas in green (Fig. 3). Built-up area distribution pre-
sented in the land-use map is used for assessing built-up
area distribution by age. For building height assessment,
we also attempted to use contour lines and elevation val-
ues presented on the map in parts with bare land, roads,
and so on.

3. Assessing Built-Up Area Distribution by Age
Using LANDSAT Imagery

3.1. Outline of Assessment Method

In advance preparation, the land-use map (Fig. 3) was
digitized at a resolution of 300 dpi (dot per inch) and con-
verted to image data by giving position information. The

Fig. 2. ALOS/PRISM orthorectified image observed on
2008/10/15.

Fig. 3. Landuse map in Lima (2004).

surface resolution of imagery at that time was about 3 m.
Next, pixel size was converted to that of an image with
a resolution of 30 m, which is the same as that of the
Landsat imagery, and each pixel was classified into one of
three types, i.e., built-up area, vegetation, or others (bare
ground, roads, etc.). The most typical land use in each
pixel the size of 30 m was classified as the land use for
each pixel. Built-up area distribution on the land-use map
is presented in Fig. 4. Pixels in pink represent built-up
area, in green vegetation, and in grey other areas.

Based on built-up area distribution of the land-use map
presented in Fig. 4, assessing the distribution of built-up
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Fig. 4. Digitized landuse image.

area by age was conducted by assessing areas developed
as new built-up areas through image analysis using Land-
sat imagery of different ages. Comparing past Landsat
imagery from 1987 and 1998 with imagery from 2006
from Landsat imagery presented in Fig. 1 as well as cur-
rent built-up area distribution presented in Fig. 4, there
are many areas that were vegetation areas or bare ground
in past imagery but are currently built-up areas, indicating
urban sprawl. For this reason, built-up areas are assessed
by age in this study by assessing areas that were formerly
vegetation or bare ground but are currently built-up areas.

Specifically, indices representing vegetation areas and
bare ground are calculated from each Landsat image and
differences in indices between images by age are calcu-
lated. Areas with a difference greater than a threshold are
assessed as areas that have changed from vegetation areas
or bare ground to built-up areas.

3.2. Calculation Indices
3.2.1. Assessing Vegetation Area

To assess vegetation areas or the bare ground in Land-
sat imagery, it is effective to calculate interband images to
calculate indices that represent the possible existence of
each type of feature. Indices typically representing the ac-
tivation level of vegetation at pixels in an image include a
normalized vegetation index, the NDVI (Normalized Dif-
ference Vegetation Index), which is expressed by the fol-
lowing equation.

NDVI =
B4−B3
B4+B3

(−1 ≤ NDVI ≤ 1) . . . (1)

B3 and B4 indicate pixel values of band 3 and band 4
images, respectively. NDVI, widely used to assess vege-

tation based on remote sensing imagery, indicates that the
greater the value, the more likely a vegetation area is in-
cluded in an area that corresponds to a pixel. NDVI distri-
bution calculated from the four images used is presented
in Fig. 5. Area covered with clouds in the 2006 image is
covered with a white frame. An enlarged view of NDVI
distribution calculated from the 2006 Landsat image and
the 2004 land-use map is presented in Fig. 6. As shown
by the arrow in the figure, area corresponding to green
space on the land-use map exhibits a high NDVI in the
image, allowing us to confirm that the NDVI is effective
in assessing vegetation area.

3.2.2. Assessing Bare Ground
A method used to assess bare ground from remote sens-

ing imagery is a soil index, the NDSI (Normalized Dif-
ference Soil Index), which is expressed by the following
equation [4]:

NDSI =
B5−B4
B5+B4

(−1 ≤ NDSI ≤ 1) . . . (2)

B5 indicates the pixel value of band 5. Similar to the
NDVI, the NDSI is an index calculated from interband
calculation, indicating that a pixel with a greater value
is more likely to represent bare ground. Bare ground
and built-up area are relatively close in terms of spectral
characteristics of imagery, however, and accordingly, both
may be difficult to discriminate when using the NDSI [5]
so, when assessing bare ground, we also discuss the fol-
lowing indices:

NBI =
B3×B5

B4
. . . . . . . . . . . . (3)

NUI = B3+B6−B4−B5 . . . . . . . . (4)

where

Bn =
Bn−AveBn

SDBn
×50+100 (n = 3,4,5,6) (5)

Here, NBI is an acronym for the New Built-up Index [5],
which uses the ratio of pixel values between band 4 and
band 5 to express the characteristic in which a pixel value
of band 3 becomes larger for bare ground than for an built-
up area. NUI is an acronym for the Normalized Urban In-
dex [6], which has the characteristic in which pixel values
of band 3 and band 6 become large in built-up areas and
bare ground whereas pixel values of band 4 and band 5
are relatively small. The pixel value of each band is cal-
culated using Eq. (5) from a value normalized using aver-
age value AveBn and standard deviation SDBn of imagery.
The NUI is characterized by values that become larger in
built-up areas and bare ground than in green space.

Index distribution calculated from the 2006 Landsat
image and the 2004 land-use map is present in Fig. 7.
White area indicated by an arrow on the land-use map
represents bare ground, such as mountains. The NDSI
distribution value tends to be slightly lower in the area of
bare ground and relatively high in urban areas. There are
many pixels that indicate low values, however, and the
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Fig. 5. NDVI images in 1987, 1998, 2002 and 2006.

Fig. 6. Comparison of 2004 landuse map and 2006 NDVI image.
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Fig. 7. Comparison of 2004 landuse map, NDSI, NBI and NUI images in 2006.

boundary between bare ground and built-up area is not
clear. Similar to NDSI distribution, NBI distribution ex-
hibits a low value for bare ground and a high value for
an built-up area, indicating a boundary relatively clearer
between bare ground and built-up area than for the NDSI.
There are also areas with a small value, however, even in
built-up areas. Unlike other indices, NUI distribution ex-
hibits a large value for bare ground and a small value for
an built-up area, exhibiting a relatively clear boundary.
This is likely because, compared with other indices, the
NUI uses more pieces of information of band 6 (thermal
infrared region) and surface temperature of bare ground
in the target area tends to be higher than that in urban area
and thus the NUI is effective in extracting bare ground. As
a result of discussion, this study uses the NUI for assess-
ing bare ground. NUI distribution calculated from Land-
sat imagery is presented in Fig. 8.

3.3. Assessing Built-Up Area by Age
3.3.1. Discussion on Threshold Values of Indices

Areas that were vegetation in past imagery are high on
the NDVI and become low after developing into built-up
areas. Areas that were bare ground in past imagery are
high on the NUI and become low after having changed to

built-up areas. For this reason, urban sprawl is assessed
from imagery by using NDVI and NUI difference values
calculated from the images.

Verification of the effectiveness of this method requires
past and current high-resolution image data other than
Landsat imagery. For the target area, there are aerial pho-
tographs observed in 1984. For this study, as presented
in Fig. 9, we acquired aerial photographs on new resi-
dential areas in the suburb of northern Lima. This aerial
photograph is used as past validation data because it was
observed at a time close to when 1987 Landsat imagery
was observed. This monochrome image has a spatial res-
olution of about 20 cm. High-resolution satellite images
have become available relatively easily. This study uses
a satellite WorldView-2 (WV2) images observed in 2010
as current validation data in correspondence to the 2006
Landsat image. The acquired WV2 images have the area
presented in Fig. 9. This color image has a spatial resolu-
tion of 50 cm.

Difference values between NDVI and NUI calculation
from 2006 and 1987 Landsat images were calculated for
each pixel (2006-1987). The negatively larger the differ-
ence value, the more likely the corresponding area has
changed from vegetation or bare ground to built-up area.
In order to analyze areas that are currently built-up area,
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Fig. 8. NUI images in 1987, 1998, 2002 and 2006.

we focus on the current built-up area pixels presented in
Fig. 4.

Figure 10 presents a comparison of the 1984 aerial
photograph, the 2010 WV2 image and distributions of the
NDVI and NUI difference. In the figure of the NDVI dif-
ference and the NUI difference, the closer to purple the
color, the negatively greater the difference value. By vi-
sually judging the aerial photograph and the WV2 image,
we extracted, as training areas, areas that have changed
from vegetation to built-up area, from bare ground to
built-up area, and that have been built-up at any period in
time. In Fig. 10, the area indicated by the green frame rep-
resents areas that have changed from vegetation to built-
up area, the area indicated by the orange frame represents
areas that have changed from bare ground to built-up area,

and the area indicated by the purple frame represents ar-
eas that have been built-up at any period in time. The
distribution of the NDVI difference indicates that there
are many red and purple pixels in areas that have changed
from vegetation to built-up area and the difference value is
negatively high. Similarly, the distribution of the NUI dif-
ference indicates that there are many red and purple pixels
in areas that have changed from bare ground to built-up
area and the difference value is negatively high.

According to Fig. 10, we extracted pixels in polygons
of areas that have changed from vegetation to built-up
area (green frame), from bare ground to built-up area (or-
ange frame), and built-up at any period in time (purple
frame), and created histograms of the NDVI and NUI dif-
ference values. Histograms are presented in Figs. 11(a)
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Fig. 10. Comparison of 1984 aerial photo, 2010 WV2 image, difference of NDVI and difference of NUI images.

Fig. 9. Coverage of 1984 aerial photos and 2010 WV2 images.

and (b). For the sake of histogram distribution clarity,
values normalized by the maximum at each histogram are
represented on the vertical axis. The red line represents
the histogram of areas changed from vegetation to built-
up, the blue line areas have changed from bare ground to
built-up, and the black line represents areas that have been
built-up at any period in time.

The distribution of the NDVI difference value of
Fig. 11(a) indicates that areas that have changed from
bare ground to built-up area and that have been built-up
at any period in time each exhibit a difference value of
approximately −0.1 or greater. Areas that have changed
from vegetation to built-up exhibit a wide distribution
from −0.6 to 0. This study sets a threshold value of −0.1
and extracts pixels with an NDVI difference value of −0.1
or less as areas that have changed from vegetation to built-
up.

The distribution of the NUI difference value in
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Fig. 11. Histograms of difference of NDVI and difference of NUI.

Table 2. Classification accuracy of threshold by difference of NDVI and NUI.

Landuse change
from 1984 to 2010

Num. of
Pixels

Threshold by Difference of NDVI Threshold by Difference of NUI
Correctly

classified (%)
Falsely

classified (%)
Total (%) Correctly

classified (%)
Falsely

classified (%)
Total (%)

Vegetation to Built-up 486,540 75.2 24.8 100.0 99.3 0.7 100.0
Bare ground to Built-up 30,105 100.0 0.0 100.0 80.5 19.5 100.0

Built-up to Built-up 149,859 99.5 0.5 100.0 99.3 0.7 100.0

Fig. 11(b) indicates that areas that have changed from
vegetation to built-up and that have been the built-up at
any period in time each exhibit a difference value of 10
or greater. Areas that have changed from bare ground to
built-up area exhibit a wide distribution from −60 to 40.
This study sets a threshold of 10 and extracts pixels with
a NUI difference value of 10 or less as areas that have
changed from bare ground to built-up.

Table 2 presents results of classification using each
threshold value, i.e., the number of pixels included in each
polygon and the correct classification rate and false clas-
sification rate of threshold value processing for NDVI and
NUI difference values. The threshold value processing re-
sult from the NDVI difference value indicates that correct
classification rates of areas changed from bare ground to
built-up and areas that have been urban at any period in
time are each almost 100% and the correct classification
rate of areas that have changed from vegetation to built-
up is relatively high at 75%. Similarly, the threshold value
processing result from the NUI difference value indicates
that correct classification rates of areas changed from veg-
etation to built-up and areas that have been built-up at any
period in time are each almost 100% and the correct clas-
sification rate of areas changed from bare ground to built-
up is relatively high at 80%.

3.3.2. Assessing Built-Up Area by Age and Discussions
We assessed the distribution of built-up area by age us-

ing the threshold values discussed in the previous section.
The assessment flow is presented in Fig. 12. As presented
in Fig. 4, built-up area pixels are extracted from the 2004
land-use map. Targeting these, NDVI and NUI difference

calculated from 2006 and 1998 Landsat images are used
to carry out threshold value processing using the threshold
values discussed in the previous section. Pixels indicat-
ing a difference value lower than the threshold are classi-
fied as new built-up area developed after 1998. Threshold
value processing is carried out similarly for pixels indi-
cating a difference value higher than the threshold using
NDVI and NUI differences calculated from the 1998 and
1987 Landsat images. Pixels indicating a difference value
lower than the threshold are classified as relatively newer
built-up area developed between 1987 and 1998, and pix-
els indicating a difference value higher than the thresh-
old are classified as older built-up area that existed before
1987. In areas covered with cloud in the 2006 Landsat im-
age, pixels are similarly classified using the 2002 Landsat
image in place of the 2006 Landsat image. These results
are combined to assess the distribution of urban area by
age.

Assessment results are presented in Fig. 13. Pixels in
pink represent older built-up area that existed since be-
fore 1987, pixels in red represent built-up area developed
between 1987 and 1998, and pixels in yellow represent
newer built-up area developed after 1998. Although most
of Lima City had been developed before 1987, there are
relatively new urban areas in northern, southern, and east-
ern Lima City, which indicates that urban sprawl has been
gradually taking place.

The number of pixels of the built-up area of each age
counted from assessment results in Fig. 13 is presented in
Table 3. The square of built-up area for each age is also
calculated from the number of pixels and pixel size (30 m
× 30 m). In the target area, there are built-up areas in a
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Fig. 12. Flowchart of built-up age classification using landuse map, NDVI and NUI images. (TH: Threshold value).

Fig. 13. Result of built-up age classification.
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Table 3. Number of pixels and area of each built-up area.

Age Num. of Pixels Area (km2) Percent (%)

Built-up before 1987 1,192,567 1,073 68.1
Built-up between
1987-1998 314,830 283 18.0

Built-up after 1998 243,192 219 13.9

Total 1,750,589 1,576 100.0

total of about 1,600 km2, about 70% of which have been
urban since before 1987, about 20% of which developed
as urban between 1987 and 1998, and slightly over 10%
that are built-up areas developed after 1998.

Since analysis results are classification results in 30 m
mesh, it is difficult to comprehend the age of individual
buildings. It is possible, however, to evaluate when each
built-up area was developed. In future, if building in-
ventory data that indicates the number of buildings are
created, age information necessary for earthquake dam-
age estimation of buildings will be able to be added using
these analysis results.

4. ALOS/PRISM Image-Based Estimating
Building Height

4.1. Characteristics of PRISM and DSM
Information measured by stereovision using two aerial

photographs and satellite imagery observed from two di-
rections is called the DSM (Digital Surface Model). This
includes not just the height of ground but also the height
of features such as buildings and trees. To get a wide
area of DSM, the use of a satellite with a wide range of
observation is efficient, and small-size features such as
buildings are usually extracted using images from high-
resolution satellites such as IKONOS and QuickBird.
These satellites are not, however, constantly engaged in
stereo observation, so DSM is not always acquired with
the expected area at the expected period of time. PRISM
on the ALOS satellite has three sensors – views forward,
nadir, and backward – with angles different from one
another. In the orbital direction, a triplet stereo image
with an acquisition time difference for each sensor of 45
seconds is obtained constantly. The DSM is generated
through matching processing with the triplet stereo im-
age.

This study attempted to extract building height from
the DSM of a PRISM image that has such advantages.
The DSM calculation procedure is as follows (see refer-
ence [7] for details): A stereo-matching point is searched
by simultaneously moving forward and backward view-
ing correlation windows in the disparity direction with re-
spect to the correlation window centered on the calcula-
tion grid (equivalent of pixel size of DSM) of the nadir
image. Correlation windows are moved on an approxi-
mate straight line that meets geometric conditions of ob-
servation orbit in regard to images forward, nadir, and

Fig. 14. Digital surface model (DSM) derived from
ALOS/PRISM image.

Fig. 15. Sum of correlation coefficient image of triplet
stereo matching.

backward. The point at which sum of correlation coeffi-
cients and obtained from a stereo pair of forward and nadir
viewing and a stereo pair of backward and nadir view-
ing, respectively, becomes maximum is designated as the
stereo-matching point. The DSM value is uniquely deter-
mined from the thus searched-for stereo-matching point.
The size of correlation windows in matching, which is
one of the parameters difficult to set, is set to a variable
between 9× 9 pixels and 29× 29 pixels and an automat-
ically optimized size is used. In general, a smaller cor-
relation window can track a smaller target object and can
accurately extract a spatially high-frequency component,
but it is difficult to apply to an area with poor texture and
susceptible to noise. A larger correlation window has the
advantage of better noise tolerance but it is difficult to ex-
tract a feature with high spatial frequency. An optimal
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size that balances such a tradeoff is used to determine the
stereo-matching point [7].

Figure 14 presents a DSM image of the study target
area. The DSM was created with grid intervals of 5 m.
Water bodies and cloud areas are masked because the
DSM cannot be calculated. Fig. 15 presents an image
of the sum of correlation coefficients. According to its
value distribution, the value of urbanized areas is gen-
erally higher than that of hills. Among built-up areas,
the value is relatively small in central Lima, indicating
the difficulty in searching for a corresponding point at
the time of matching processing. As mentioned earlier,
the DSM acquired as shown in Fig. 14 includes not only
ground level height but also feature height. We will now
discuss how to extract the height of buildings from the
DSM.

4.2. Feature Height Assessment
4.2.1. Difference Between DSM and DEM

The most common way to extract the height of fea-
tures is to deduct ground level height from the DSM. Data
on the digitized ground level height are called a DEM
(Digital Elevation Model). Global dataset is known as
GTOPO30 [8]. GTOPO30 assumes, however, a grid size
of elevation points of 30 seconds (about 1 km), which
gives low ground resolution. In Japan, the Geospatial In-
formation Authority of Japan publishes Basic Geospatial
Information (Digital Elevation Model) [9] based on large-
scale topographic maps that approximately covers Japan
completely in a grid of 10 m. There are data available
in a grid of 5 m for some areas of Japan. Such a high-
resolution DEM does not exist in developing countries
such as Peru, however.

This study attempted to create a DEM for Lima based
on information on leveling, contour lines included in ex-
isting topographic maps, and so on. The land-use map
presented in Fig. 3 includes elevation values in some ar-
eas of bare ground and roads, i.e., area without buildings.
Contour lines are drawn over hills. We carried out spatial
interpolation using the IDW (Inverse Distance Weighted)
method so that discrete elevation data are on a grid of 5 m.
Fig. 16 presents a DEM generated from a land-use map
that exhibits good overall correspondence compared with
the PRISM DSM in Fig. 14. Both include offset result-
ing from differences in geodetic data and thus its influ-
ence needs to be eliminated. We then extracted approxi-
mately 10,000 pixels at random for the entire image from
areas that were classified as bare ground, roads, etc., from
the land-use map. We then calculated offsets between
the DSM and DEM of pixels. An image of difference
in the DSM and the DEM based on offset is presented in
Fig. 17. The figure indicates that the difference value is 0
or slightly larger in a wide area of low land in particular.
Since in general, the DSM including the height of features
has a larger value, this tendency is valid. There are areas
with difference values, however, that are extremely small,
i.e., the DEM value is larger, and those that are extremely
large, i.e., the DEM value is smaller locally.

Fig. 16. Digital elevation model (DEM) generated by lan-
duse map.

Fig. 17. Difference image between PRISM DSM and lan-
duse DEM.

Figure 18 presents a difference image of central Lima
together with an orthorectified image. The footprint of
mid-to-high-rise buildings and the shape of urban areas
have been confirmed and difference values reflect build-
ing height. Fig. 19 presents an example of areas with
small difference values. According to the figure, the value
is extremely small in low land near a hill, i.e., the value of
the DEM is extremely larger than that of the DSM. Fig. 20
presents the same area of land-use map as that used to
generate the DEM. Unlike with hills, which have a con-
tour line, elevation values are written at a small number
of points in low land, i.e., elevation values do not exist
with sufficient density. DEM values are large in low land
because of the influence of elevation values of hills in in-
terpolation due to the small number of elevation values
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Fig. 18. Zoom-in images (Area A) of PRISM image and difference between PRISM DSM and landuse DEM.

Fig. 19. Zoom-in images (Area B) of PRISM image and difference between PRISM DSM and landuse DEM.

Fig. 20. Landuse map of Area B. Blue rectangle indicates
the point of elevation measurement, blue dot-polygon indi-
cates contour of elevation.

that can be referenced.
As seen above, a highly accurate DEM cannot be ac-

quired from existing maps, and it is difficult to estimate
building height using the difference from the DSM. We
will now attempt to assess building height from the DSM
alone.

4.2.2. DSM Filtering Process
Once the DSM value of the ground level around a build-

ing is given, the height of the building can be assessed
by calculating the difference from the DSM of the build-
ing. In data on building footprint, the outer circumference
of a building footprint represents ground level, where the
DSM value is thought to be smaller than that of the sur-
roundings. There are no such data on building footprint,
however, in the target area. In this study, when assessing
a point that is thought to be at ground level from the sur-
rounding of a building, we set a calculation window and
assumed that the minimum value of the DSM in the win-
dow is likely to be ground level. We assessed the height
of a feature at the target point by deducting the value from
the DSM at the center pixel (target point) in the window.
Actual processing includes the step of moving the win-
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Fig. 22. Zoom-in images (Area B) of height difference generated by PRISM DSM filtering. (a) simple method, (b) modified method.

Fig. 21. Height difference image generated by PRISM DSM
filtering.

dow in units of 1 line by 1 pixel for the entire image and
repeating calculation, thereby giving a distribution of fea-
ture height. The size of the calculation window was set
at 17× 17 pixels (about 85 m square) in view of building
size.

Figure 21 presents the distribution of the estimated fea-
ture height. Fig. 22(a) presents an image in the same area
as that of Fig. 19. For urban areas, height information
similar to building shape seems to have been successfully
extracted. The boundary between hills and low land be-
comes clear, but no area has been found in which the value
is extremely small for low land near a hill, as shown in
Fig. 19. Some areas, however, have rectangular block
noise regardless of building distribution. Since its size is
the same as the size of the calculation window, an abnor-
mally small DSM value may have been extracted when
the minimum value in the window was calculated. Such
an abnormal value is caused by a matching error at the

Fig. 23. Distribution of buildings carried out height mea-
surement in field survey.

time of DSM generation and thus needs to be removed
from the calculation target.

To do so, statistical values, i.e., average av and stan-
dard deviation sd, of the DSM in the calculation window
are calculated in advance and points with a DSM value
greater or smaller than av ±5× sd are removed from the
calculation target. In addition, points for which the value
of the sum of correlation coefficients at the time of DSM
generation is less than 1.5 are removed from the calcula-
tion target on the assumption that these points are low in
DSM value reliability. Fig. 22(b) presents a distribution
of feature height acquired using the improved method. Al-
though some points cannot be calculated for some hills
and low land, block noise is reduced in a wide area of
low land and height distribution of the feature similar to
building shape.
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Fig. 24. Relationship between estimated building height
from PRISM DSM image and measured height by field sur-
vey.

Fig. 25. Relationship between total correlation coefficient
and height difference.

4.3. Building Height Estimation and Verification

We conducted a field survey in September 2011 in order
to verify the assessment accuracy of feature height calcu-
lated from the DSM. We targeted mid-to-high-rise resi-
dential buildings and office buildings and measured the
height of the ceiling of the top floor using a laser range
finder. Fig. 23 presents a distribution of the 119 buildings
surveyed. The height range of surveyed buildings is 10 to
90 m. Among them, for 59 buildings existing in cloud-
free areas, the position is confirmed from the PRISM or-
thorectified image and WV2 image and a building foot-
print is created for each, then is overlaid on feature height
distribution acquired in Fig. 21, and the maximum value

Fig. 26. Buildings carried out height measurement in WV2
image. (a) building No.117, (b) building No.50, (c) building
No.59.

of the feature height within the building footprint is deter-
mined to be the estimated value of building height.

Figure 24 presents a result of comparison between
the building height estimated from PRISM DSM and the
building height actually measured on site. According to
calculation, the RMS error was 21 m. The figure indicates
that there are 28 buildings for which a difference between
the assessment value and actually measured value is equal
to or less than 10 m, and about half of the buildings have
been successfully assessed with an error equal to or less
than 10 m. Of these, however, 17 buildings have a dif-
ference in error equal to or greater than 20 m. There are
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Fig. 27. Relationship between window size of correlation
calculation and height difference.

many buildings for which the estimated value in particular
is underestimated more than the actually measured value.
To discuss DSM value reliability at a point where build-
ing height was assessed, Fig. 25 presents a comparison
between the sum of correlation coefficients and errors. It
is not that error is great when the value of the sum of cor-
relation coefficients is small but that there is almost no
correlation between them.

We now discuss the cause of the large error in height
estimation seen in some buildings. Fig. 26(a) presents
a WV2 image of building No.117, which has the largest
error. The size of the building floor is represented by a
yellow polygon. The building, located at the corner of an
intersection point, is a 22-storey high-rise building 68.6
m high, but the building floor area is relatively small.
Fig. 26(b) presents building No.50, an 18-storey build-
ing 58.2 m high. There are no high buildings surrounding
building No.50. The color of the building is close to that
of surrounding buildings and empty spaces. Such build-
ings with a small building floor area or a hue that cannot
be distinguished from the surroundings are thought to be
difficult to detect. Fig. 27 presents the size of a correlation
window in matching processing. For most points, a cor-
responding point is determined in a correlation window
of 9 × 9 pixels but the correlation window for building
No.50 is 29× 29 pixels. Accordingly, building No.50 is
missed when stereo-matching points are searched for and
the height of surrounding ground is calculated. Building
nos. 57 to 60 are high-rises of 50 m high with the same
shape that have an error of 40 m. Fig. 26(c) presents build-
ing No.59 as an example. The accurate height of a build-
ing with a complicated shape cannot be calculated due to
difficulty in finding stereo-matching points.

We now discuss buildings for which the height is es-
timated accurately. Fig. 28(a) presents building No.54,
which has an estimation error of 4 m. The building has
a bright-colored roof, which is different from the color of

Fig. 28. Buildings carried out height measurement in WV2
image. (a) building No.54, (b) building No.62.

the surroundings, and has a slightly larger building floor
area. The value of the sum of correlation coefficients is
1.9, which indicates that the stereo-matching point has
been calculated accurately. Fig. 28(b) presents building
No.62, which also has a large floor area. Texture given by
irregularity on the roof is thought to work as a cue for a
corresponding point search.

As seen above, we have successfully estimated the
building height of about half of the surveyed buildings
with errors of 10 m or less. We have not, however, ac-
curately extracted small buildings, buildings with compli-
cated shapes, or buildings with hue and texture similar to
those of surroundings in stereo matching. As a result, the
height of buildings assessed from the DSM tends to be
smaller than that of actual buildings. This suggests that
PRISM images have insufficient resolution for assessing
the height of each building in a highly accurate manner.
Areas with a concentration of large-size, mid-to-high-rise
buildings can, however, be assessed to some extent. In
future, we will attempt to evaluate the height of buildings
in city blocks and create building inventory data that con-
tribute to building damage estimation.

5. Conclusions

This study has intended to create building inventory
data that contribute to earthquake damage estimation. Tar-
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geting Lima City, Peru, this study has compared aerial
photographs and field survey results in an attempt to ex-
tract the spatial distribution of building age from time-
series Landsat satellite images and assessing building
height from ALOS/PRISM stereovision images. The
main results are as follows:

Using Landsat images shot in 1987, 1998, and 2006,
we calculated indices that represent vegetation area and
bare ground and, through threshold value processing of
differences in indices among age, assessed areas that
have changed from vegetation to built-up and from bare
ground to built-up. By comparing an aerial photograph
observed in 1984 and a high-resolution satellite image ob-
served in 2010, we have verified the assessment accuracy
of changed points, and have successfully extracted them
with a correct classification rate of about 80%.

By calculating built-up area distribution by age for all
of Lima City, we have found that about 70% of built-up
area had been developed before 1987 and that newly de-
veloped built-up areas sprawled out to the suburb of north-
ern, southern, and eastern Lima.

Distribution of feature height acquired by difference
between the DEM (Digital Elevation Model) generated
from a land-use map and the DSM (Digital Surface
Model) of PRISM imagery has the problem that the DEM
value becomes extremely large in low land near a hill.
This is caused by the low density of elevation measure-
ment data in low land on the land-use map.

Comparing the distribution of feature height acquired
through filter processing of PRISM DSM images with ac-
tual building height acquired from field surveys, both ex-
hibit relatively good correspondence for large-size, mid-
to-high-rise buildings. It may be difficult, however, to de-
tect buildings with small floor area, with hue similar to
that of surroundings, and with complicated shape.
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