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In this paper a model of slip distribution is proposed
for the 1746 Callao earthquake and tsunami based on
macroseismic observations written in historical docu-
ments. This is done using computational tools such as
tsunami numerical simulation through a forward pro-
cess by trial and error. The idea is to match historical
observations with numerical simulation results to ob-
tain a plausible seismic source model. Results show
a high asperity from Cañete to Huacho, which would
explain the great destruction in this area. The rupture
directivity of the seismic source, from north to south,
would explain the value of the arrival time of the first
tsunami wave at Callao. A kinematic seismic source
model was used as a first approximation of the event.
The estimated magnitude was Mw9.0.
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1. Introduction

Many researchers have tried to infer seismic sources of
historical events such as the 1755 Lisbon earthquake [1,
2], the 1693 Catania earthquake [3], and the 1700 Casca-
dia earthquake [4], etc., from macroseismic observations
recorded in historical documents and from observations
of marine geology and paleo-tsunami studies [5, 6], using
tsunami numerical modeling techniques. Other authors
such as Dorbath [7], using only macroseismic informa-
tion, have qualitatively estimated the magnitude and rup-
ture area size.

At the present time, we have suitable numerical tools
and geophysical instrumentation such as broadband seis-
mic stations, digital tide gauge stations, geodetic GPS and
radar interferometry INSAR for studying seismic sources

and crustal deformation. This is not the case for his-
torical events such as the 1746 earthquake, however. In
this sense, we can only infer or estimate a seismic source
model from macroseismic and tsunami descriptions of
historical documents found in the literature.

2. Historical Aspects

Silgado [8], among other authors, performed a com-
pilation of the historical aspects of this event. Be-
low is a summary of the historical account provided by
Soloviev [9]:

The tragedy began on October 28, 1746, at 22:30 pm.
To the north, the quake was felt as far as Guayaquil,
1100 km from Lima, and a Jesuit mission located
near the confluence of the Marañón and Huallaga
rivers, 750 km from Lima. In Huancavelica, south-
south-east of Lima, there was severe thunder accom-
panying movement. Buildings south of Lima col-
lapsed all the way to Cañete, and north to Huacho
about 120 km north of Lima, where a new bridge
over the river collapsed at Huaura. Roads leading
to the interior were blocked by landslides. The val-
leys of Supe, Barranca and Pativilca were seriously
damaged by the earthquake and tsunami. Movement
was also felt in Cusco, Tacna and border towns. Af-
tershocks were felt in Lima overnight and within
24 hours, no fewer than 200 events were counted.

The port of Callao suffered the most damage from
this catastrophe. The city was enclosed by a wall
whose base was sometimes beaten by the tide and
waves. The population reached 5,000 people. Half
an hour after the quake, the sea rose 10 m and, in
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its advance, broke the walls and inundated the city.
When the sea receded, most of the houses and build-
ings were taken from their foundations and washed
away. Most of the walls of the city, including the
gates, were washed away. Almost all of the inhab-
itants of the city perished in this disaster. The wa-
ter rose about 4 km inland, reaching even those who
tried to escape to Lima. Only 200 people were saved,
and these by clinging to wooden objects, but were
thrown between the coast and San Lorenzo island, a
distance of up to 8 km. Of the 23 ships anchored
in the harbor, 19 were sunk and 4 were carried in-
land. At around 04:00 of the next day, Callao was
inundated again by another tsunami wave. The max-
imum inundation height was estimated at 24 m.

In the port of Santa (see Fig. 1), waves hit the ship
Concepcion with such force that it sprang a leak and
sank. The crew of the Soledad, which was near
Nazca, noted that the sea had retreated, and took pre-
cautions, so the ship was saved. The tsunami de-
stroyed the ports of Caballas (Ica), Pisco, Chancay
and Guañape (La Libertad). Near Huacho, the road
was completely flooded and vehicles that stayed on
the road, together mules, were swept away when the
sea receded. In Huaura (Salinas), the sea flooded ar-
eas around 4 km inland, drowning mules and drivers.
Near Callao, after the earthquake, part of the coast-
line suffered subsidence, to where a new bay was
formed. In the space of six hours after the inundation
at Callao, the tsunami reached Concepción, Chile;
and at Acapulco, Mexico, a ship was washed ashore.

From historical records of authors cited in the litera-
ture [10], we found the following important facts, which
will be useful in defining seismic source through a for-
ward process based on trial and error. Note that in doing
so, parameters of the simulated tsunami will need to fit
these historical observations.

a) The arrival time in Callao of the first tsunami wave
was at around 30 minutes.

b) The maximum height of the first tsunami wave was
about 10 m at Callao.

c) The maximum inundation height (runup) was 24 m
(at the cliffs of the Costa Verde zone), see paragraph
5.3 and Fig. 6.

d) After the earthquake, a permanent subsidence at
Callao was reported.

e) Total destruction stretched from Cañete in the south
to Barranca and Pativilca in the north. This implies
large asperity or slip between these locations.

f) Maximum horizontal inundation was 4 km probably
at the old Rimac River bed.

g) Tsunami waves arrived at Callao from the northwest.
See Fig. 2, from a picture of the period [11].

 

Fig. 1. Location of ports and resorts affected by the tsunami.

 

Fig. 2. 1746 Tsunami, from a picture of the period [11].

h) According to Silgado [8], the intensity was X-XI
MM in Lima and Callao. It is possible that the oc-
currence of some cracks in the main square in Lima
would imply very great acceleration.

Due to the lack of more historical data to thoroughly
confirm the testimonies in the record, we will, at this
stage, use available information as the main constraint to
be satisfied by the seismic source model proposed here.

3. Data Acquisition

3.1. Topographic and Bathymetric Data
To prepare digital elevation model data, satellite and

survey data topographic and bathymetric was acquired.
These data were digitally processed to obtain a digital el-
evation model with a grid resolution of 30 m (inundation
grid) and 900 m (generation and propagation grid), as well
as intermediate grids. Table 1 specifies the resolution of
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Table 1. Characteristics of digital elevation models.

Model Type Resolution
SRTM 90 Topography 90 m
DHN survey Bathymetry 100 m
Gebco 30 Topo-bathymetry 900 m

each topographic and bathymetric model.
The DHN (Dirección de Hidrografı́a y Navegación)

bathymetry and SRTM topography have been processed
(through two-dimensional interpolation) to obtain a fine
resolution digital elevation model of 30 m in raster or ma-
trix format to be used in the inundation phase for the nu-
merical simulation. To develop codes and routines, we
used Fortran and Matlab programming language, libraries
and Mapping Toolbox utilities as well as Surfer 7.0 soft-
ware. For application of the linear model of tsunami prop-
agation, we used Gebco30 bathymetry.

4. Methodology
4.1. Forward Method by Trial and Error

If we know the parameters that characterize a system
and its initial and boundary conditions, then we can pre-
dict the behavior of the system at any instant in time. This
problem of predicting future behavior, is called the “for-
ward problem.” The “inverse problem” is to use the re-
sults of certain observations: tidal, field data, and paleo-
tsunami deposits, etc. to infer values of parameters char-
acterizing a system [12].

In this paper we use information from historical doc-
uments to estimate parameters of a seismic source (slip
distribution). The solution of the forward problem is not
unique, but chooses that set of values providing the best
correlation between observed and simulated data. The
trial and error method involves varying parameters in this
case, slip and depth and performing the numerical model
and comparing the output with historical data, then repeat-
ing the process as often as necessary to achieve a rough
correlation.

4.2. Constraints on the Size of the Source and Mag-
nitude of the Earthquake

According to the seismotectonic pattern, the size of
seismic source in the central region of Peru is restricted
by the Nazca ridge (15◦S) to the south and the Mendaña’s
fracture (10◦S) to the north. This region covers a distance
around 600 km. According to the empirical relation of
Papazachos [13]:

log(L) = 0.55M−2.19 . . . . . . . . . (1)

where L is in km. Magnitude would have a maximum
limit of Mw9.0. Furthermore, the fact that it caused cracks
in the main square in Lima indicates that there was strong
acceleration due to an event of great magnitude, i.e., of
at least Mw9.0. Dorbath [7] estimated a magnitude of
Mw 8.6 and 9.0 Mt, Beck [14] estimated Mw8.8, and

Table 2. Focal mechanism parameters.

Focal mechanism Angle
Strike angle 329◦

Dip angle 20◦

Slip angle 90◦

Table 3. Geometry parameters of the fault.

Parameter
Longitude 550 km
Width 140 km
Mean slip 11.5 m
Depth 8.0 km

Ocola [15] calculated Mw 9.2 based on macroseismic in-
tensity.

This paper proposes a magnitude of Mw9.0 as an initial
assumption. Later, it will be shown that this magnitude
fits results from tsunami numerical simulation.

4.3. Focal Mechanism and Fault Parameters
Focal mechanism parameters (see Table 2) are esti-

mated according to following assumptions: the azimuthal
angle should be parallel to the marine trench in central
Peru (about 329◦). The dip angle for the central region
of Peru is 20◦ (average dip for CMT solutions) and the
displacement angle (rake or slip angle) is estimated in 90◦
for maximum vertical deformation. These are the fixed
parameters in the proposed method.

According to empirical equations relating fault dimen-
sions to magnitude, fault dimensions would be for a mag-
nitude Mw9.0: L = 575 km and W = 144 km. However,
in this paper we set these dimensions to: L = 550 km and
W = 140 km. According to the relation between scalar
seismic moment and moment magnitude:

log(M0) = 1.5Mw +9.1 . . . . . . . . . (2)

We have: M0 = 3.98×1022 Nm, using the following def-
inition of scalar seismic moment:

M0 = μLW D . . . . . . . . . . . . . (3)

where: μ = 4.5×1010 N/m2, is the average rigidity of the
elastic medium. After calculating the dislocation value or
mean slip D, we have: D = 11.5 m. The geometry of the
rupture area must be heterogeneous composed of several
fragments to represent the maximum asperity in the area
from Cañete to Barranca. The depth of the top of the fault
is taken initially as: H = 5 km, and after the trial and error
method used, is set finally to H = 8 km (see Table 3).

5. Tsunami Numerical Modeling

5.1. Seismic Source Model
According to Perfettini [16], the Nazca ridge appears to

be a barrier aseismic to earthquake rupture. Because no
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Fig. 3. Fragments of the seismic source (slip distribution).

Table 4. Slip distribution for each of 5 fragments. Coor-
dinates correspond to the lower left corner and depth to the
upper side along the vertical axis faults.

N◦ Lat (◦) Lon (◦) Hj (km) Slip (m)
1 -14.2000 -77.4200 8.00 09.00
2 -13.3520 -77.9295 8.00 17.50
3 -12.5040 -78.4390 8.00 17.00
4 -11.6561 -78.9485 8.00 07.00
5 -10.8082 -79.4580 8.00 07.00

great historical earthquakes have been reported in north-
ern Peru since at least the 17th century, it is reasonable
to assume that great earthquakes at Lima correspond to a
rupture between latitudes 15◦S to 9◦S. We have chosen a
fault length L = 550 km, a distance encompassing to these
latitudes.

We have assumed that Peruvian seismicity distribution
is located on a fault plane from the trench. We have cho-
sen a dip angle for subduction plane δ = 20◦ correspond-
ing to mean dip of CMT solutions in the selected area.
Width W of the fault in the direction of the dip angle is
chosen as W = 140 km and corresponds to depth limit
W sin(δ )+H of 58 km, a depth consistent with the exten-
sion of seismicity with depth. The lower limit of the hor-
izontal projection of the fault corresponds approximately
to the position of the coast, often seen to be the limit of
great subduction earthquakes.

To simulate historical tsunami information we have
divided the total rupture area into five fragments (see
Fig. 3). Slip distribution is obtained by the forward
method by trial and error until the model agrees with his-
torical observations. The present model may be appropri-
ate for explaining available tsunami information, but not
necessarily the observed intensities due to shaking of the

Fig. 4. Initial deformation of the seabed [19].

ground. This slip distribution is given in Table 4, wherein
the mean slip value corresponds to 11.5 m (see Figs. 3 and
4).

To calculate initial coseismic deformation of our source
model (see Fig. 4) we used the model of Okada [17],
which will be used to set the initial condition of the
tsunami propagation phase.

5.2. Tsunami Propagation Model
We have used the numerical model TUNAMI [18],

which numerically solves using a finite difference scheme
(the leapfrog method) equations of conservation of linear
momentum and the continuity equation of fluid dynamics
to simulate the propagation (linear model in spherical co-
ordinates) and inundation (nonlinear model in Cartesian
coordinates for inundation grid) of the tsunami, with the
initial condition of coseismic deformation given by the
seismic source model.

To fit the requirement of “tsunami waves arriving at
Callao after half an hour from the northwest,” we must
take into account a source rupture directivity from north
to south for a total rupture time of about 3 minutes
(vr = 3 km/s). This implies that the rupture could start
from fault 01 (north) consecutively until fault 05 (south),
(Fig. 5). This is in agreement with the North-West to
South-East unilateral rupture propagation that has charac-
terized most great earthquakes in Peru, such as the 1996
Nazca, 2001 Camaná and 2007 Pisco earthquakes. This
probably means that the rupture began north of the rup-
ture area and then propagated south-east.
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Fig. 5. Kinematic model of the seismic source for the 1746 Callao earthquake and tsunami.

Fig. 6. Virtual tidal gauges. Notice lower saturation due to
the proximity of virtual gauges to the shoreline. The height
of the first wave in Callao was 10 m while the maximum
runup was 22 m at Costa Verde.

5.3. Tsunami Inundation Model
For simulation of this phase, we have used a non-linear

model to take into account friction between fluid and
ground through the Manning roughness coefficient. As
a result of non-linear simulation of tsunami dynamics, we
have obtained parameters such as arrival time and wave
height.

Figure 6 shows that in a virtual gauge, adjacent to the
Lima port area (Callao DHN), the first wave had a height
of 10 m with an arrival time of 23 minutes. In the area

of La Punta, the first wave was less than 10 m, while in
the area of the Costa Verde, the height of the first wave
was greater than 22 m. These differences are due to the
bathymetry, topography and morphology of each particu-
lar area.

We also observe a peculiarity of the coseismic subsi-
dence phenomenon that started after the earthquake, i.e.,
a decrease in the sea level as evidenced by virtual gauges
before the arrival of the first tsunami wave. This is due to
the geometry of the subduction zone and the focal mech-
anism of the earthquake.

Figure 7 shows an inundation map for Callao. Inunda-
tion would arrive at 4 km from La Punta to the landmark
of Plaza Vea. In the airport zone, inundation would arrive
at 1.8 km inland, the airport is located 3.6 km inland, so
the airport would not be affected. It is also noted that at
Costa Verde, waves may be more than 22 m high, which
is consistent with historical information.

6. Conclusions

The seismic source parameters modeled in this study
are derived from historical documents and information
from seismic catalogs based on macroseismic parameters.

The magnitude of 1746 Callao earthquake is estimated
at Mw9.0, a value obtained quantitatively by the forward
process of trial and error through numerical modeling of
tsunamis.

Heterogeneous initial deformation or slip distribution
indicates greater asperity from Cañete to the south to Bar-
ranca to the north. This agrees with the total destruction
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Fig. 7. Tsunami inundation map for Callao and Miraflores Bay. Note the height (red) reached by the tsunami
waves in Costa Verde. Blue triangles correspond to virtual gauges: M1 = Callao-DHN, M2 = La Punta, M3 =
Costa Verde.

reported in this region.
For great earthquakes or for very slow rupture velocity,

it is necessary to apply a kinematic source model. This
affects the values of tsunami arrival time, depending on
the directivity of the rupture process.

For a near field tsunami at Lima and Callao, the arrival
time of the first wave would be 23 minutes (at Callao)
according to the nonlinear inundation model.

According to the numerical model, the height of the
first wave at virtual gauge M1 (Callao DHN) is 10 m. The
maximum vertical inundation height or run-up is 22 m at
virtual gauge M3 (Costa Verde), (Fig. 7).

Results obtained by this paper correspond to a numeri-
cal model and, to some extent, are validated by data from
historical documents.

Acknowledgements
The authors acknowledge support from: the project of the Science
and Technology Research Partnership for Sustainable Develop-
ment supported by JST-JICA, Dirección de Hidrografı́a y Nave-
gación of the Peruvian Navy and the Universidad Nacional Mayor
de San Marcos - Fenlab.

References:
[1] M. Baptista, P. Miranda, J. Miranda, and V. Mendes, “Constrains

on the source of the 1755 Lisbon Tsunami inferred from numer-
ical modelling of historical data on the source of the 1755 Lis-
bon Tsunami,” Journal of Geodynamics, Vol.25, No.2, pp. 159-174,
1998.

[2] A. Santos, S. Koshimura, and F. Imamura, “The 1755 Lisbon
Tsunami: Tsunami Source determination and its validation,” Jour-
nal of Disaster Research, Vol.4, No.1, pp. 41-52. 2009.

[3] M. Gutscher, J. Roger, M. Baptista, J. Miranda, and S. Tinti,
“Source of the 1693 Catania earthquake and tsunami (southern
Italy): new evidence from tsunami modeling of a locked subduc-

tion fault plane,” Geophysical Research Letters, Vol.33, L08309,
2006.

[4] K. Satake, K. Wang, and B. Atwater, “Fault slip and seismic
moment of the 1700 Cascadia earthquake inferred from Japanese
tsunami descriptions,” Journal of Geophysical Research, Vol.108,
No.B11, 2003.

[5] D. Sugawara, F. Imamura, H. Matsumoto, K. Goto, and K. Minoura,
“Reconstruction of the AD 869 Jogan earthquake induced tsunami
by using the geological data,” Journal of Japanese Society of Natu-
ral Disaster Science, Vol.29, pp. 501-516, 2011.
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Brief Career:
2000-2007 Assistant Research, Instituto Geofisico del Perú IGP
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