Group 3

Evaluation of seismic resistance of buildings in Peru

Group Leaders ——		
Dr. Carlos Zavala	PI - SATREPS Peruvian side	
Dr. Taiki Saito	Professor, Toyohashi University of Technology	

G3 Research Subjects

Category	Achievement
Seismic Design of buildings in Peru	Seismic test database of masonry elements \rightarrow design formula
(for new buildings)	Material testing
	Design method of non-ductile wall
Seismic Evaluation of buildings in Peru (for existing buildings)	Proposing evaluation method (based on JP)
	Computer Simulation software of masonry using DEM
Sellen ge/	Remote monitoring with IT sensors
	Micro-tremor measurement of historical Buildings
Seismic Retrofitting (for existing	Propose CF sheets retrofitting for non- ductile wall

2

Sensors E. REBAGLIATI HOSPITAL

RECORDED RESPONSE FIC - G2 block building

Response of each level: 1B (sótano= underground soil), 0F (ground), 1F (roof), 2F, 3F

Civil Engineering Faculty (FIC) G2 block bldg

Registered Response - wave

Civil Engineering Faculty (FIC) G2 block bldg

DATA ADQUISITION: Registered Response

Quake	itk00	itk01	itk02	itk03	itk04	itk00	itk01	itk02	itk03	itk04
Date	N-S	N-S	N-S	N-S	N-S	E-W	E-W	E-W	E-W	E-W
18/10/2013	5.92	6.14	12.61	13.08	14.66	6.39	7.74	9.69	6.85	13.65
25/11/2013	13.02	16.08	26.23	30.89	46.18	18.66	24.7	48.3	35.61	59.78
12/02/2014	3.03	4.56	7.06	6.85	5.64	2.39	3.88	3.46	3.23	4.44
18/02/2014	3.46	3.66	7.6	9.08	20.57	3.08	4.14	6.82	8.04	10.41
22/02/2014	8.44	10.97	13.18	15.83	16.28	11.58	16.14	14.16	14.61	15.24

Peak accelerations

Data of 25/11/2013

MATERIAL TESTING TO IMPROVE MASONRY STANDARDS

CHARA	CHARACTERISTICS RESISTANCES OF MASONRY Mpa (kg / cm ²)					
MATERIAL	NAME	UNITE f_b	$\frac{PILE}{f_m}$	Diagonal Wall test		
	King Kong Artesanal	5,4 (55)	3,4 (35)	0,5 (5,1)		
Arcilla	King Kong Industrial	14,2 (145)	6,4 (65)	0,8 (8,1)		
	Rejilla Industrial	21,1 (215)	8,3 (85)	0,9 (9,2)		
	King Kong Normal	15,7 (160)	10,8 (110)	1,0 (9,7)		
Sílice-cal	Dédalo	14,2 (145)	9,3 (95)	1,0 (9,7)		
	Estándar y mecano (*)	14,2 (145)	10,8 (110)	0,9 (9,2)		
Concreto		4,9 (50)	7,3 (74)	0,8 (8,6)		
	Plaque Tine D (*)	6,4 (65)	8,3 (85)	0,9 (9,2)		
		7,4 (75)	9,3 (95)	1,0 (9,7)		
		8,3 (85)	11,8 (120)	1,1 (10,9)		

Source N.T.E. 070, Masonry Standard

WS-SATREPS March, 2014 @ Tokyo, Japan

Solid brick (Handmade)

Solid brick (Factory)

TEST PROGRAM FOR MASONRY MATERIALS

- **Bricks** 0
- Mortar 0
- Masonry specimen: 0
 - Compressive strength:
 - Diagonal tensión test:
 - Direct shear test:
- 48 specimens
- 48 specimens
- 48 specimens

Prism

Wallets

Direct shear specimen

BRICKS PROPERTIES Compression strength Bricks

Test of brick

PRISMS TEST RESULTS (Compresion stress againts Elastic Modulus (E))

E= 500 f'm Current value of NTE-070 Standards should be modifie

DIAGONAL TENSION TEST

ΤΙΡΟ	V promedio (kg/cm2)		
ART 1 15	8.1		
ART 2 15	18.9		
ART 3 15			
ART 1 13	14.6		
ART 2 13	21.1		
ART 3 13	24.7		
IND 1 15	12.1		
IND 2 15	9.9		
IND 3 15	11.1		
IND 1 13	33.6		
IND 2 13	39.0		
IND 3 13	17.7		

MASONRY QUADLINEAR ENVELOPE CURVE

QUAD-LINEAR MODEL

- 4 Linear segments
- Craking Point
- Yielding Point
- Maximun Point
- Ultimate Point

Cyclic Load Test Plane and H – Masonry and Low Ductility Concrete Wall

Comparison of Behavior curves of Plane Walls

Tubular Block

Cyclic Load Test H Wall-05

Zavala C. et.al. Masonry wall test considering perpendicular wall action 5th Workshop - SATREPS, Tokyo, Japan March 5th 6th 2014-

COMPARISON OF PLANE AND H WALL MASONRY WALL

Final Stage Cyclic LDCW

Comparison with 2012, 2013 Tests

CONFIRMATION IF THE TENDENCY OF INFLUENCE THE PERPENDICULAR WALL ACTION

COMMENTS & CONCLUSIONS

- First building monitoring network has been installed in Peru and <u>in full</u> <u>operation</u> at the present time in Lima as a part of the Project for Enhancement of Earthquake and Tsunami Disaster Mitigation Technology in Peru (JICA/JST) under the cooperation scheme of SATREPS
- For <u>several earthquakes near Lima last year, response of bldgs were</u> <u>recorded</u>. For recent recorded events, has been possible only direct acquisition of data response from local server at each bldg.
- From Masonry material test, There have been variations of the geometric and mechanical properties of the units used respect to 20 years ago.
- Modifications on Peruvian Standards are required due to industry reduce the quality bricks.
- Wall test on Masonry and Low ductility concrete, considering perpendicular wall action has been performed. Influence of perpendicular wall on inelastic range is very important.

