Group 3

Evaluation of seismic resistance of buildings in Peru

 Group Leaders 	
Dr. Carlos Zavala	PI - SATREPS Peruvian side
Dr. Taiki Saito	Professor, Toyohashi University of Technology

G3	Research	Subj	jects
----	----------	------	-------

Achievement Category Seismic Design of Seismic test database of masonry elements → design formula buildings in Peru (for new buildings) Material testing Design method of non-ductile wall Proposing evaluation method (based on JP) Seismic Evaluation of buildings in Peru **Computer Simulation software of masonry** (for existing buildings) using DEM Remote monitoring with IT sensors Propose CF sheets retrofitting for non-Seismic Retrofitting ductile wall (for existing buildings)

Collection of Data of Masonry Structure

Reference	Total Number of Papers	Empirical Study	Others	Remarks
Architectural Institute of Japan (AIJ)	367	241	57:material 69: others	1979 - 2010
Japan Concrete Institute (JCI)	20	12	8: material, analysis, others	2003 - 2008
World Conference on Earthquake Engineering (WCEE)	243	89	154: design, analysis, others	1980(7WCEE) - 2008(14WCEE)
Earthquake Spectra (Earthquake Engineering Research Institute: EERI)	158	12	146: design, analysis, others	1984 - 2011

Masonry : Unreinforced Masonry, Reinforced Masonry and Confined Masonry

(as of March 13, 2012)

Walls Subjected to Lateral Forces

Strength and Deformation of Masonrv Walls Subjected to Lateral Forces

Seismic Capacity Evaluation of Masonry Buildings⁷

Seismic Structural Index Is

$$I_{S} = \phi \times E_{0} \times S_{D} \times T$$
$$\phi = \frac{n+1}{n+i}$$

n: number of stories of the building
 i: number of the story for evaluation
 *E*₀: basic seismic index of structure
 =C (strength index) x *F* (ductility index)
 *S*_D: irregularity index
 T: time index

Japan Building Disaster Prevention Association: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001.10 mic Performance of Masonry Buildings and Evaluation Methods

Analysis of out-of-plane failure

(a) Scheme of the test set up

(b) Specimen of the shaking table

(a) Scheme of the test set up

8

14

Simulation of out-of-plane failure

Discrete element model for brick

Variat Ser n

2010 Chile earthquake

Seismic retrofitting using CF sheets ¹⁶

Lower story wall in 12-story building assumed, about 2/3 scale Three specimens were prepared Non retrofitting wall is designed to be flexural failure

Specimens

Process of retrofitting

Wrap sheet

Loading procedure

1 7

No retrofitting (flexural failure)

<u>R=1.5%rad</u>

1 9

Full retrofitting

Specimen RWF1

R=2.0%rad

Partial retrofitting

Specimen RWF2

R=2.0%rad

Shear force – drift angle relationship²²

Envelope curve

It is confirmed that ductility improve due to wrapping carbon fiber sheet.

Effect of constraining concrete of specimen RWF2 is larger than specimen RW

