

Science and Technology Research Partnership for Sustainable Development : **SATREPS**

The 3rd Japan-Peru Workshop on Enhancement of Earthquake and Tsunami Disaster Mitigation Technology

Development of Structural Testing Systems in CISMID

March 13, 2012

Patricia GIBU, Carlos ZAVALA

National University of Engineering, UNI, Peru.

1

Building Group G3 Structural Behavior of low ductility Concrete Wall

Japanese Team

Prof. Masaomi Teshigawara (Nagoya University)

Prof.Koichi Kusunoki (Yokohama National University)

Dr. Masahiro Tani (Building Research Institute)

Prof. Carlos Zavala (CISMID-FIC-UNI)

Associate Prof. Patricia Gibu (CISMID-FIC-UNI)

Assistant Prof. Luis Lavado (CISMID-FIC-UNI)

Msc. Jenny Taira (CISMID-FIC-UNI)

This walls are widely used on Middle rise buildings

Low ductility wall: main differences

Low ductility wall :main differences

Low ductility wall :main differences

3 construction

X ▼Massive, continuous placement: joint at base of wall, hole air bags (cangrejeras) ok ▲ Fluid concrete with fibers

Reduce total time of construction

One day, one story: walls and slabs placed at once

(RC : walls, then slabs)

Why to study this walls

- During 1998 to 2003 non regulation was applied in the construction of this kind of wall due to were not consider shear walls. The application was on 5 story buildings, however many constructors start to build structures of 12, 14 and 16 stories, just like that, without confinement columns.
- On 2003 the NTE-060 Peruvian Concrete Standard include recommendations for construction of this kind of walls.
- Stiffness contribution of the perpendicular wall is need in order to know the inelastic behavior under lateral load with and without perpendicular wall.
- Check the new equipment received by UNI from SATREPS project.
- Compare stresses levels with test results performed at Yokohama University

DRAWINGS OF SPECIMENS

ELEVACIÓN FRONTAL

ESC. 1/50

M1 (e=0.10m) ESC. 1/25

I Wall: Wall-01 & Wall-02

ELEVACIÓN LATERAL

ESC. 1/50

DRAWINGS OF SPECIMENS

SPECIMENS: I and H types

Simple : I walls (2 specimens)

SPECIMENS: I (simple) and H

With orthogonal walls : H wall (1 specimen)

Construction of Specimen

SIMPLE WALL

H type WALL

Construction of Specimen

REINFORCEMENT AND FORMS

Test Setup

Test Setup

Test of I-walls

Test: hysteresis wall-01

ADQUISITION SENSORS FOR MEASURING								
CH-NUMBER	RANGE	TIPO	UNIT	ORIGIN				
CH-0	25	ACT. 25t/4755µ	Т	AXIAL LOAD				
CH-1	50	JACK A	Т	FEEDBACK HORIZONTAL LOAD-A				
CH-2	50	JACK B	Т	FEEDBACK HORIZONTAL LOAD-B				
CH-3	100	CDP	mm	HORIZONTAL DISPLACEMENT SOUTH				
CH-4	100	CDP	mm	HORIZONTAL DISPLACEMENT NORTH				
CH-5	50	CDP	mm	HORIZONTAL DISPLACEMENT EAST H/2				
CH-6	50	CDP	mm	HORIZONTAL DISPLACEMENT WEST H/2				
CH-7	30	CDP	mm	HORIZONTAL DISPLACEMENT EAST H/6				
CH-8	30	CDP	mm	HORIZONTAL DISPLACEMENT WEST H/6				
CH-9	30	CDP	mm	VERTICAL DISPLACEMENT EAST H/6				
CH-10	30	CDP	mm	VERTICAL DISPLACEMENT WEST H/6				
CH-11	50	KY 2794µ/FS	mm	DIAGONAL DISPLACEMENT EAST				
CH-12	50	KY 2819µ/FS	mm	DIAGONAL DISPLACEMENT WEST				
CH-13	30	КҮ	mm	HORIZONTAL DISPLACEMENT EAST H/6 CENTER				
CH-14	30	KY	mm	HORIZONTAL DISPLACEMENT WEST H/6 CENTER				
CH-15	10	CDP	mm	HORIZONTAL DISPLACEMENT EAST BOTTON BASE				
CH-16	50	CDP	mm	VERTICAL DISPLACEMENT WEST				
CH-17	50	CDP	mm	VERTICAL DISPLACEMENT WEST				
CH-18	50	CDP	mm	VERTICAL DISPLACEMENT EAST				
CH-19	50	CDP	mm	VERTICAL DISPLACEMENT EAST				
CH-20-ST 07	2000	gage factor 2.08	μ	EAST \$ 1/2 BORDES				
CH-21-ST 08	2000	gage factor 2.08	μ	EAST 🖗 MALLA DE MURO				
CH-22-ST 09	2000	gage factor 2.08	μ	EAST 🕈 MALLA DE CIMENTACION				
CH-23-ST 10	2000	gage factor 2.08	μ	WEST & MALLA DE CIMENTACION				
CH-24-ST 11	2000	gage factor 2.08	μ	WEST 🕈 MALLA DE MURO				
CH-25-ST 12	2000	gage factor 2.08	μ	WEST Ø 1/2 BORDES				
CONTROL SENSORS FOR DRIVE JACKS ON CONTROLLER								
CH-MONITOR	RANGE	TIPO	UNIT	ORIGIN				
CH-1	50	JACK A	Т	FEEDBACK HORIZONTAL LOAD-A				
CH-2	100	CDP	mm	JACK CONTROL MASTER				
CH-3	50	JACK B	Т	FEEDBACK HORIZONTAL LOAD-B				
CIL A								

Cyclic Test: cracks on wall-01

Drift:. 1/549

AGRIETAMIENTO MURO 1 Cara Sur _{Drift:. 1/280}
> AGRIETAMIENTO MURO 1 Cara Sur

Drift:. 1/200

Cyclic Test : cracks on wall-01

AGRIETAMIENTO MURO 1 Cara Sur _{Drift:. 1/200}

AGRIETAMIENTO MURO 1 Cara Sur _{Drift:. 1/154}

Wall-01- Final State

Wall-01- Final State

Test: hysteresis wall-02

ADQUISITION SENSORS FOR MEASURING								
CH-NUMBER	RANGE	TIPO	UNIT	ORIGIN				
CH-0	25	ACT. 25t/4755µ	Т	AXIAL LOAD				
CH-1	50	JACK A	Т	FEEDBACK HORIZONTAL LOAD-A				
CH-2	50	JACK B	Т	FEEDBACK HORIZONTAL LOAD-B				
CH-3	100	CDP	mm	HORIZONTAL DISPLACEMENT SOUTH				
CH-4	100	CDP	mm	HORIZONTAL DISPLACEMENT NORTH				
CH-5	50	CDP	mm	HORIZONTAL DISPLACEMENT EAST H/2				
CH-6	50	CDP	mm	HORIZONTAL DISPLACEMENT WEST H/2				
CH-7	30	CDP	mm	HORIZONTAL DISPLACEMENT EAST H/6				
CH-8	30	CDP	mm	HORIZONTAL DISPLACEMENT WEST H/6				
CH-9	30	CDP	mm	VERTICAL DISPLACEMENT EAST H/6				
CH-10	30	CDP	mm	VERTICAL DISPLACEMENT WEST H/6				
CH-11	50	KY 2794µ/FS	mm	DIAGONAL DISPLACEMENT EAST				
CH-12	50	KY 2819µ/FS	mm	DIAGONAL DISPLACEMENT WEST				
CH-13	30	КҮ	mm	HORIZONTAL DISPLACEMENT EAST H/6 CENTER				
CH-14	30	КҮ	mm	HORIZONTAL DISPLACEMENT WEST H/6 CENTER				
CH-15	10	CDP	mm	HORIZONTAL DISPLACEMENT EAST BOTTON BASE				
CH-16	50	CDP	mm	VERTICAL DISPLACEMENT WEST				
CH-17	50	CDP	mm	VERTICAL DISPLACEMENT WEST				
CH-18	50	CDP	mm	VERTICAL DISPLACEMENT EAST				
CH-19	50	CDP	mm	VERTICAL DISPLACEMENT EAST				
CH-20-ST 07	2000	gage factor 2.08	μ	EAST \$ 1/2 BORDES				
CH-21-ST 08	2000	gage factor 2.08	μ	EAST 🖗 MALLA DE MURO				
CH-22-ST 09	2000	gage factor 2.08	μ	EAST 🖗 MALLA DE CIMENTACION				
CH-23-ST 10	2000	gage factor 2.08	μ	WEST 🕈 MALLA DE CIMENTACION				
CH-24-ST 11	2000	gage factor 2.08	μ	WEST 🖣 MALLA DE MURO				
CH-25-ST 12	2000	gage factor 2.08	μ	WEST Ø 1/2 BORDES				
CONTROL SENSORS FOR DRIVE JACKS ON CONTROLLER								
CH-MONITOR	RANGE	TIPO	UNIT	ORIGIN				
CH-1	50	JACK A	т	FEEDBACK HORIZONTAL LOAD-A				
CH-2	100	CDP	mm	JACK CONTROL MASTER				
CH-3	50	JACK B	Т	FEEDBACK HORIZONTAL LOAD-B				
CH-4								

Cyclic Test : cracks on wall-02

AGRIETAMIENTO MURO 2 Cara Sur _{Drift:. 1/280}
> AGRIETAMIENTO MURO 2 Cara Sur Drift:. 1/200

Cyclic Test : cracks on wall-02

AGRIETAMIENTO MURO 2 Cara Sur Drift:. 1/200 °°° VS°°°°°

AGRIETAMIENTO MURO 2 Cara Sur Drift:. 1/154

Wall-02- Final State

Wall-02

Building Group G3 On line real time Vibration Monitoring System in Peru

Japanese Team

Prof. Masaomi Teshigawara (Nagoya University)

Prof.Koichi Kusunoki (Yokohama National University)

Dr. Go Takayama (ITK Sensors Co.)

Prof. Carlos Zavala (CISMID-FIC-UNI)

Associate Prof. Patricia Gibu (CISMID-FIC-UNI)

Assistant Prof. Luis Lavado (CISMID-FIC-UNI)

Msc. Jenny Taira (CISMID-FIC-UNI)

NATIONAL UNIVERSITY OF ENGINEERING FACULTY OF CIVIL ENGINEERING JAPAN-PERU CENTER FOR EARTHQUAKE ENGINEERING RESEARCH AND DISASTER MITIGATION - CISMID

ITK Sensor Monitoring Network

Capture Signal at Structural Lab CISMID-FIC-UNI

Sensors - testing local network

At Laboratory rooms building

3rd Floor: top of bldg, 3 places

2nd Floor: office room

1st Floor: Control room

CONCLUSIONS

- New equipment was implemented in the structural Lab of CISMID.
- A program for test Two I walls and One H wall has been initiated.
- Results of the first the walls provide information to continue the study of the behavior of low ductility wall.
- Next step is the research of the influence of perpendicular wall on low ductility specimens.
- The results will complement our Japanese counterparts research and we can discuss in order to learn about the influence of the flange to web wall.

