Development of Structural Testing Systems in CISMID

March 13, 2012

Patricia GIBU, Carlos ZAVALA
National University of Engineering, UNI, Peru.

Building Group G3
Structural Behavior of low ductility Concrete Wall

Japanese Team
Prof. Masaomi Teshigawara
(Nagoya University)

Prof. Koichi Kusunoki
(Yokohama National University)

Dr. Masahiro Tani
(Building Research Institute)

Peruvian Team
Prof. Carlos Zavala
(CISMID-FIC-UNI)

Associate Prof. Patricia Gibu
(CISMID-FIC-UNI)

Assistant Prof. Luis Lavado
(CISMID-FIC-UNI)

Msc. Jenny Taira
(CISMID-FIC-UNI)
This walls are widely used on Middle rise buildings

Low ductility wall: main differences

1. Thickness
 - 100mm thick
 - (RC walls: min 150mm)

2. Reinforcement
 - Electrowelded wire mesh
 - (RC walls: only deformed steel bars)
 - Deformed steel bars at edges
 - Dowells tied to basement
Low ductility wall: main differences

3 construction

(FC: walls, then slabs)

One day, one story: walls and slabs placed at once

Massive, continuous placement: joint at base of wall, hole air bags (cangrejeras)

Fluid concrete with fibers
Reduces total time of construction
Why to study this walls

• During 1998 to 2003 non regulation was applied in the construction of this kind of wall due to were not consider shear walls. The application was on 5 story buildings, however many constructors start to build structures of 12, 14 and 16 stories, just like that, without confinement columns.

• On 2003 the NTE-060 Peruvian Concrete Standard include recommendations for construction of this kind of walls.

• Stiffness contribution of the perpendicular wall is need in order to know the inelastic behavior under lateral load with and without perpendicular wall.

• Check the new equipment received by UNI from SATREPS project.

• Compare stresses levels with test results performed at Yokohama University

DRAWINGS OF SPECIMENS

I Wall: Wall-01 & Wall-02
DRAWINGS OF SPECIMENS

T - Wall: Wall-03

Malla tipo: Q-108 (5.50x12 @.10) (A=1.08 cm²)

Ver detalle de acero

Dimensions and details are shown in the diagram.
SPECIMENS: I and H types

Simple : I walls (2 specimens)

SPECIMENS: I (simple) and H

With orthogonal walls : H wall (1 specimen)
Construction of Specimen

SIMPLE WALL

H type WALL

Construction of Specimen

REINFORCEMENT AND FORMS
Test of I-walls

<table>
<thead>
<tr>
<th>CH-01</th>
<th>CH-02</th>
<th>CH-03</th>
<th>CH-04</th>
<th>CH-05</th>
<th>CH-06</th>
<th>CH-07</th>
<th>CH-08</th>
<th>CH-09</th>
<th>CH-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
</tr>
<tr>
<td>RANGE</td>
<td>02</td>
<td>5</td>
<td>ACT.</td>
<td>4755µ</td>
<td>TAXIAL</td>
<td>LOAD</td>
<td>0</td>
<td>ACT.</td>
<td>2555µ</td>
</tr>
<tr>
<td>TIPO</td>
<td>JACK</td>
<td>CDP</td>
<td>mm</td>
<td>CDP</td>
<td>mm</td>
<td>CDP</td>
<td>mm</td>
<td>CDP</td>
<td>mm</td>
</tr>
<tr>
<td>UNIT</td>
<td>A</td>
<td>CDP</td>
<td>x</td>
<td>CDP</td>
<td>x</td>
<td>CDP</td>
<td>x</td>
<td>CDP</td>
<td>x</td>
</tr>
<tr>
<td>ORIGIN</td>
<td>CH-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ADQUISITION SENSORS FOR MEASURING

Test: hysteresis wall-01
Cyclic Test: cracks on wall-01

AGRIETAMIENTO MURO 1
Cara Sur
Drift: 1/280

AGRIETAMIENTO MURO 1
Cara Sur
Drift: 1/200

Cyclic Test: cracks on wall-01

AGRIETAMIENTO MURO 1
Cara Sur
Drift: 1/200

AGRIETAMIENTO MURO 1
Cara Sur
Drift: 1/154
Wall-01- Final State

(Images of wall with markings and text)

Wall-01- Final State

(Images of wall with markings and text)
Cyclic Load Test Wall-01

Test: hysteresis wall-02
Cyclic Test: cracks on wall-02

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/2015

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/1503

Cyclic Test: cracks on wall-02

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/1075

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/549
Cyclic Test: cracks on wall-02

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/280

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/200

Cyclic Test: cracks on wall-02

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/200

AGRIETAMIENTO MURO 2
Cara Sur
Drift: 1/154
Cyclic Load Test Wall-02

Building Group G3
On line real time Vibration Monitoring System in Peru

Japanese Team

Prof. Masaomi Teshigawara
(Nagoya University)

Prof. Koichi Kusunoki
(Yokohama National University)

Dr. Go Takayama
(ITK Sensors Co.)

Peruvian Team

Prof. Carlos Zavala
(CISMID-FIC-UNI)

Associate Prof. Patricia Gibu
(CISMID-FIC-UNI)

Assistant Prof. Luis Lavado
(CISMID-FIC-UNI)

Msc. Jenny Taira
(CISMID-FIC-UNI)
Capture Signal at Structural Lab
CISMID-FIC-UNI

CISMID-FIC-UNI ITK-06 IP-Sensor
13/07/2011 -05:07 hrs

CISMID-FIC-UNI ITK-06 IP-Sensor
16/09/2011 -16:50 hrs

ITK Sensor Monitoring Network

ITK-P01
ITK-P02
ITK-P03
ITK-06

Proposal Location
Sensor Working
CONCLUSIONS

• New equipment was implemented in the structural Lab of CISMID.

• A program for test Two I walls and One H wall has been initiated.

• Results of the first the walls provide information to continue the study of the behavior of low ductility wall.

• Next step is the research of the influence of perpendicular wall on low ductility specimens.

• The results will complement our Japanese counterparts research and we can discuss in order to learn about the influence of the flange to web wall.