Symposium for Recent Earthquakes and Tsunami in Japan and Peru

The 2011 Tohoku Earthquake and Tsunami: 1) Earthquake and Strong Ground Motion

The 2011 Tohoku Earthquake

Origin Time: 14:46, March/11/2011 Magnitude: M_w9.0 Number of dead and missing: approx. 20,000 Number of displaced people: approx. 150,000 Number of damaged houses: approx. 800,000 Direct monetary loss: Approx. 200 billion US\$

(as of August 15, 2011)

Recent Gigantic Earthquakes in the World

HISTORICAL EARTHQUAKES IN PERU after Dorbath et al.(1990)

Year	L(km)	H_r (m)	$[M_w]$	$[M_t]$	M(Silgado)
1582	80	1 - 2	7.5	7.7-8.0	7.9
1586	175	5	8.1	8.5	8.1
1604	450	10-15	8.7	8.8-9.0	8.4
1619	100 - 150		7.7 - 8.0		7.8
1664	75		7.5		7.8
1678	100 - 150	5 (?)	7.7 - 8.0	8.5	
1687	300	5 - 10	8.4	8.5 - 8.8	8.2
1687	150 (?)		8.0		
1715	75		7.5		
1725	75		7.5		
1746	350	15 - 20	8.6	9.0-9.2	8.4
1784	300	2-4	8.4	8.0 - 8.4	8.0
1833	50 - 100		7.2 - 7.7		
1868	500	14	8.8	8.9	8.6
1940	180	3	8.1	8.2	
1942	200	3	8.2	8.2	
1966	100	2.6	7.7	8.2	
1974	140	1.6	7.9	7.9	

L = rupture length; H_r = local tsunami height; $[M_w]$ = estimate of moment derived magnitude: $[M_v]$ = estimate of tsunami magnitude.

Tectonic Plates in the Japanese archipelago and surrounding areas

Aftershock Distribution

after ERI

Crustal movement by observed by Japan Coast Guard

Past-up of Accelerograms and Rupture Process

Propagation of Strong Shaking

after SDR

12

The area of intensity 5 upper (MMI 8) or greater is approx. 35,000 km².

Comparison of Velocity Response Spectra at Different Soil Conditions

Building Damage at Furukawa, Osaki City

Building Damage at Lowland of Sendai City

Video of Strong Shaking in Tokyo

Damage of Ceiling in Tokyo Area

Soil Liquefaction in Tokyo

Long-period Ground Motion in Tokyo approx. 150km far from the epicentral area

Displacement of 0.5 to 0.7 m was observed at the top of high-rise buildings.

Long-period Ground Motion in Osaka

more than 500km far from the epicentral area

Displacement of 1.4 m was observed at the top of a 52-story high-rise building. Minor damage was observed in the building.

> Osaka Intensity 3

3月11日14時46分 三陸沖 M7.9

10年月月 111年03月11月15時01条

	after BRI
Disp. of 0.1m on 1st Floor	
200	1F_Y (peak: 7.828 cm
0-	
200	1E 7 (pools 6 906 or
0]	11_2 (pear 0.000 cm
200	
0	18F_X (peak:- 29.559 cm
200 Disp. of 0.3m on 18th Floor	
200	18F_Y (peak: 31.827 cm
200	18F Z (peak: 5.730 cn
0	
200 	
o ¹	38F_X (peak: 85.764 cn
Disp. of 0.9m on 38th Floor	
	38F_Y (peak:- 64.767 cn
200	
200	38F_Z (peak: 6.047 cm
0	
200	5054 X (
	52F1_A (peak: 151.050 cm
200 USD. 01 1.3111 011 52111 FIOOT	
	52F1_Y (peak:- 86.409 cn
200	
200	52F1_Z (peak: 12.569 cm
0	
0	5252 X (peak 137.080 cm
	52F2_X (peak: 137.089 cn
Disp. of 1.4m on 52th Floor	52F2_X (peak: 137.089 cm
Disp. of 1.4m on 52th Floor	52F2_X (peak: 137.089 cm 52F2_Y (peak:- 83.749 cm
Disp. of 1.4m on 52th Floor	52F2_X (peak: 137 089 cn 52F2_Y (peak:- 83 749 cn

Comparison of Strong Motion Records of Gigantic Earthquakes

Comparison of Attenuation of Peak Accelerations for the 2011 Northern Japan Earthquake (M9.0) with the 2003 Hokkaido Japan Earthquake (M8.3)

Comparison of Attenuation of Peak Accelerations for the 2011 Northern Japan Earthquake (M9.0) with the 2001 Peru (M8.4) and 2010 Chile (M8.8) Events

Comparison of Attenuation of Peak Accelerations for the 2011 Northern Japan Earthquake (M9.0) with Other Gigantic Earthquakes (M8.3~8.8)

Figure 1. Map of the affected region showing the main shock epicenter as well as location of several aftershocks and the location of ground motion stations. Aftershock locations are obtained from the U. S. Geological Survey.

Comparison of Duration of Strong Shaking

cumulative duration which is the time interval during which the central 90% of the contribution to the integral of the square of the acceleration takes place.

M8.3-8.4 80-100sec., M8.8 140sec., M9.0 160sec.

Summary

- The 2011 off the Pacific coast of Tohoku earthquake produced strong shaking with high acceleration and long duration in large area. The area of intensity 5 upper (MMI 8) or greater is approx. 35,000 km². On soft soils, ground motion was stronger, which caused building damage.
- In Tokyo and Osaka which are far from the epicenter, long period ground motion and large response of high-rise buildings were observed.
- The strong motion records of this earthquake are compared with those from other earthquakes of magnitude over 8. The acceleration level and spectral shape are similar to each other, but the ground motion duration of this earthquake is longer.

Figure 38. Four of the reconstruction models based on damage types (source: Reconstruction Design Council, 2011).

