1st Joint Coordinating Committee Developing Tsunami Damage Estimation and Mitigation Technologies G2: Tsunami

- Dr. Shunichi Koshimura (Tohoku Univ., Tsunami engineering)
- Mr. Erick Mas (Tohoku Univ., Tsunami engineering)
- Mr. Cesar Jimenez (DHN, San Marcos Univ., Seismology and tsunami modeling)
- Mr. Bruno Adriano (CISMID, Tsunami modeling)
- Ms. Sheila Yauri (IGP, Seismology)
- Dr. Miguel Estrada (CISMID, Earthquake engineering)
- Dr. Gaku Shoji, Mr. Yu Hiraki, Mr. Yoshiyuki Ezura (Tsukuba Univ., Structural and earthquake engineering)
- Dr. Yuji Yagi (Tsukuba Univ., Seismology)
- Dr. Yushiro Fujii (BRI, Seismology and Tsunami modeling)
- Dr. Hideaki Yanagisawa (TEPSCO, Tsunami modeling)

Project Plan

	Period (2010-2014)					
Research Topic (Organization)	2009	2010	2011	2012	2013	2014
	(10 Months)					(12Months)
G2: Tsunami 【Tohoku, BRI, Tsukuba, TEPSCO DHN, CISMID】 1) Tsunami Propagation and Impacts 2) Tsunami Hazard Mapping 3) Tsunami Damage Mitigation Technology	Data	ami Simulati	Damage Assessm	──	→	· ·

Objectives and Goals

- To assess the potential tsunami disaster and its impact to the Peruvian coast.
- To develop practical technologies to mitigate tsunami risks in Peru.
- Implementation to the strategic plans for disaster mitigation of Peruvian government.
- Contributions to Pacific tsunami disaster mitigation strategies.

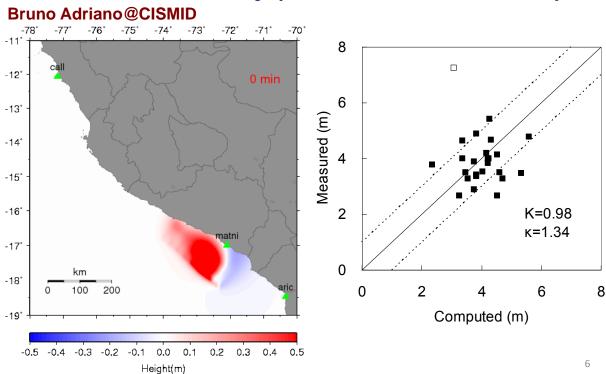
Tsunami modeling technology

Tsunami Modeling techniques (TUNAMI-code to simulate tsunami generation, off-shore/near-shore propagation and coastal inundation)

3

Equipments donated by JICA

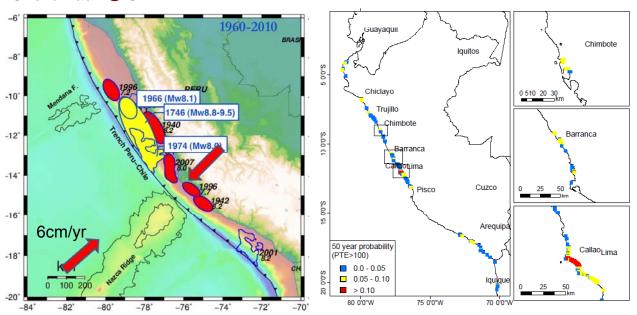
Year	Items	Quantity	Price
2010	Desktop workstation for tsunami modeling	3	\$8,897.82
2010	Mobile workstation for survey and analysis	1	\$2,002.77
2010	Software for data analysis (Arc GIS and extensions)	3lic.	\$10,535.72
2010	High-resolution satellite image data	1set	¥1,519,105



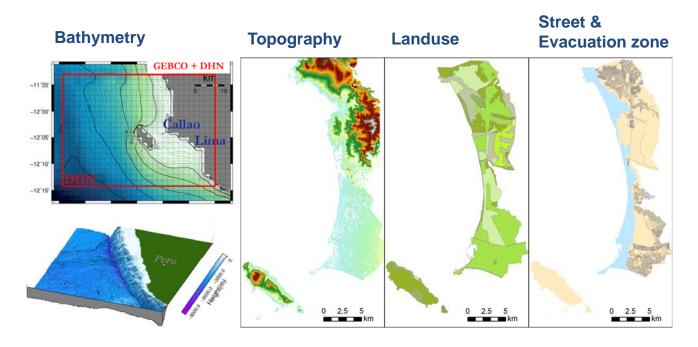
What we have done so far

- Transfer of tsunami numerical modeling technique
- Post-tsunami field survey in Chile (2010 event)
- Tsunami field survey in Camana, Peru (2001 event)
- Verification of tsunami numerical model and tsunami source study (The 2001 Camana tsunami)
- Tsunami risk assessment along the Peruvian coast
- Mapping tsunami inundation in Callao, Lima
- Tsunami risk perception and evacuation in Callao, Lima

5

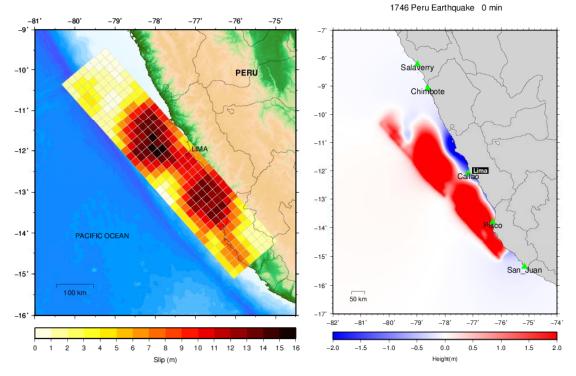

Progress Report (Tsunami Propagation and Impacts) Verification of tsunami numerical model and tsunami source study (2001 Camana tsunami)

Progress Report Tsunami Propagation and Impacts


Review of historical earthquakes (1513 - 1959) and risk analysis

Sheila Yauri@IGP

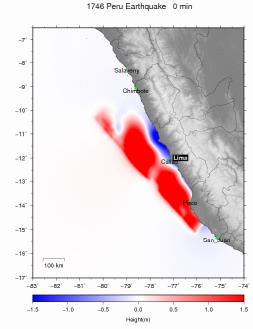
Progress Report Tsunami Hazard Mapping

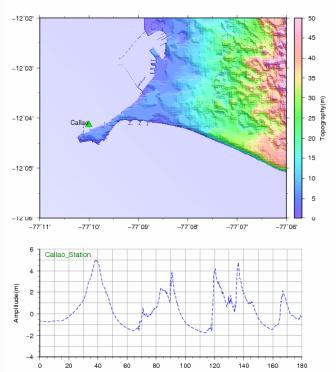

Data Collection

Progress Report Tsunami Hazard Mapping

Potential tsunami source scenario [Pulido et al., 2011](G1)

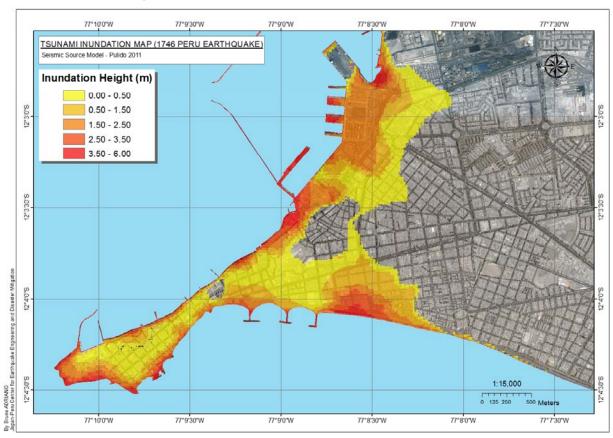
Bruno Adriano@CISMID, Cesar Jimenez@DHN, Sheila Yauri@IGP


Progress Report


Tsunami Hazard Mapping

Bruno Adriano@CISMID, Cesar Jimenez@DHN

Lima - Callao 0 min



Time(min)

Bruno Adriano@CISMID

1:

Progress Report

Tsunami Damage Mitigation Technology
Erick Mas@Tohoku Univ. Multi-agent simulation

- •Tsunami evacuation activities and strategic planning
- •Requirement of tsunami evacuation building
- Casualty estimation
- Public education

Human Resources Development

Tsunami Training Course

Field Survey in Chile

Technical Discussion

Group Meeting

Coming Schedule for 2011-2012

Tsunami Propagation/Inundation Mapping

Date	Topic	Organization
2011	Complete review of historical tsunami events and determine potential tsunami source scenarios for Callao, Lima	G1 IGP, DHN, Tohoku Univ., BRI
2011-2012	Developing archives of historical tsunami data, propagation simulation, inundation mapping.	IGP, DHN, CISMID, Tohoku Univ., BRI

Tsunami Damage/Loss Estimation

Date	Topic	Organization
2011	Developing house/building inventory, census data for Callao, Lima	G1, CISMID, Tohoku Univ.
2011-2012	Developing tsunami fragility curves and conducting damage/loss estimation for Callao, Lima.	DHN, CISMID, Tohoku Univ. Tsukuba Univ.

Tsunami Damage Mitigation Technology

Date	Topic	Organization
2011-2012	Complete hazard map for Callao, Lima	CISMID, INDECI, Tohoku Univ.
2011-2012	Strategic planning for tsunami evacuation by multi-agent simulation	CISMID, INDECI, Tohoku Univ.

Towards a new tsunami warning system in Peru & Latin American countries

- *How the seismic source information is acquired (IGP)
 - **≻**Depth
 - **>**Location
 - **≻**Magnitude
- *How tsunami forecasting is performed (DHN)
 - >Numerical model & Database (Travel time, height)

INDECI

IGP

- **≻Bathymetry** CISMID
- > Monitoring system
- How the information is delivered to the public
 - **➤** Strategic plan for evacuation (INDECI)
 - **≻Public education (INDECI, CISMID)**

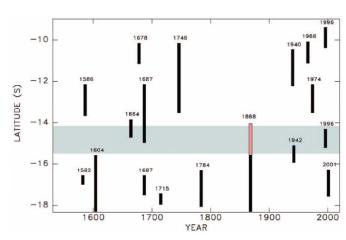
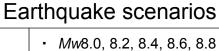

Historical earthquakes

TABLE 3
HISTORICAL EARTHQUAKES IN PERU: ESTIMATES OF MAGNITUDE

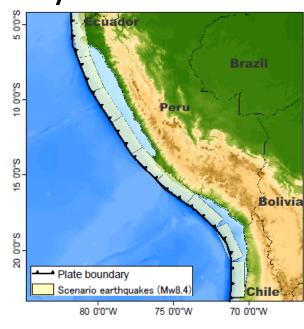

Year	L(km)	H_r (m)	$[M_w]$	$[M_{\rm f}]$	M(Silgado)
1582	80	1-2	7.5	7.7-8.0	7.9
1586	175	5	8.1	8.5	8.1
1604	450	10-15	8.7	8.8 - 9.0	8.4
1619	100-150		7.7 - 8.0		7.8
1664	75		7.5		7.8
1678	100-150	5(?)	7.7 - 8.0	8.5	
1687	300	5-10	8.4	8.5-8.8	8.2
1687	150 (?)		8.0		
1715	75		7.5		
1725	75		7.5		
1746	350	15-20	8.6	9.0 - 9.2	8.4
1784	300	2-4	8.4	8.0 - 8.4	8.0
1833	50-100		7.2 - 7.7		
1868	500	14	8.8	8.9	8.6
1940	180	3	8.1	8.2	
1942	200	3	8.2	8.2	
1966	100	2.6	7.7	8.2	
1974	140	1.6	7.9	7.9	

 $L = \text{rupture length}; H_r = \text{local tsunami height}; [M_{\infty}] = \text{estimate of moment derived magnitude}; [M_i] = \text{estimate of tsunami magnitude}.$

Tsunami vulnerability assessment

- along the plate boundary
- Fault parameters were determined following the modeling of 2001 tsunami

Numerical simulation


Maximum tsunami height

Fragility function of human death ratio

GIS analysis

- Death ratio
- Population data
- ·Potential tsunami exposure

Probability of exceedance of Potential tsunami exposure

3. Risk assessment using the index of Potential Tsunami Exposure

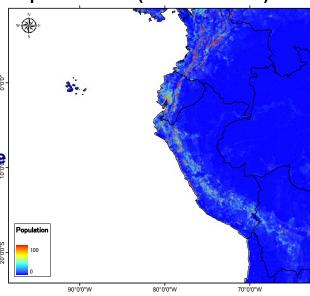
■ Fragility function for death ratio (Koshimura et al.,2009)

$$Fr(H) = \Phi \left[\frac{H - 5.37}{0.72} \right]$$

Potential tsunami exposure

 $PTE = Fr(H) \times Population$

■ *t* year probability of exceedance using Poisson process


t year probability of exceedance that PTE exceeds a value

$$P[PTE \ge a; t] = 1 - \exp(-\lambda t)$$

λ is annual frequency of occurrence

$$\lambda = \sum_{m=1}^{n} \frac{N[PTE \ge a]}{N_m} \times \frac{1}{n} \times \frac{1}{T}$$

Population data (LandScan 2008)

