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Strong Motion Records and Historical
Seismicity

1960 01 13 Arequipa, Peru M7.5
1966 10 17 Barranca M8.1

1970 05 31 Chimbote, Peru M7.9
1974 10 03 Lima M8.1 \
2001 06 23 Atico M8.4 £)
2007 08 15 Pisco M8.0

942 (8.2)
1996 (7.7

Bolivia

2010 02 27 Offshore Maule, Chile M8.8
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Source Model and Strong Motion Simulation
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Surface Soll Investigation (1)
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Surface Soll Investigation (2)

[0 Borehole and PS logging will be conducted at several
sites to examine the soil profiles and the soill
properties of the surface soill.

Borehole =

Surface Wave Method

[ In order to estimate the shallow solil profiles, the
surface wave method will be conducted, in addition to
single point / array microtremor measurements.

S-Wave Velocity Profile
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Array Measurement of Microtremors

[ Array measurements of
microtremors are
conducted in several
locations in order to
estimate the deep soil

profile of the target site in

1D, 2D or 3D.
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— Strong Motion Prediction Analysis based on Wave Prop. Theory
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Prediction of Ground Motions
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Prediction of Tsunami Run-up
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Seismic Risk of Slopes

O In Lima, there are many steep slopes Densely bUllt 4pUses in Hima

where houses are densely built.

0 Ground motion tends to become large
due to ground irregularity (slopes),
which may cause failure or landslide
during an earthquake.
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Slope failure during EQ




Seismic Microzoning
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Summary: Research Plans of G1 Group

[0 Construction of fault models for large scenario earthquakes along

the subducting plate.

B Survey of historical seismic activities.

B Strong motion observations by installing seismometers.
[0 Construction of deep and shallow soil models.

B Geophysical and geotechnical surveys including borehole
and PS loggings.

B Surface wave and microtremor measurements.
B Analysis of earthquake data from small events.
O Construction of microzonation maps.

B Strong motion simulation based on fault models and
deep/shallow soil models.

B Estimation of amplification due to surface soils.
B Estimation of slope failure.
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Motion Simulation

OSimulation of broadband strong
motion on engineering bedrock
from different scenario
earthquakes in Lima, Pisco and
Arequipa areas using a hybrid

approach. Seismic bedrock

'VL3.0km/s

003D FDM in long-period range, and
stochastic method using 1D model
in short-period range).

OCalculation of surface motion
considering 1D amplification in
surface layers due to input motion
on engineering bedrock.

AMPLITUDE

PERIOD(S)
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Seismic Observation

[0 Seismic observation is also carried out to examine the
effect of surface soils by using the array of sensors in
Lima city.
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Research Plans of SM/GT Group

Fault models for large scenario earthquakes along the
subducting plate with cooperation of Tsunami group.

Installation of strong motion instruments on ground or BF
of buildings (5 locations in Lima at first)

Geophysical and geotechnical surveys for shallow and
deep S-wave structure including borehole loggings

Analysis of earthquake data from small events to
characterize source, path and site amplification

Calculation of site amplifications for microzonation map

Estimation of slope failure from geotechnical surveys

Strong motion simulation based on hybrid approach of
theoretical and empirical methods

e i o A o R oo A o TR o

23

Analysis of Small Earthquake Data

O Estimation of source characteristics of small events, Q-
factor for the crust and mantle, site amplification

O Estimation of envelope function of small events for use of
stochastic Green’s function

O Exploration of deep S-wave velocity profiles using
earthquake data, such as receiver function, phase velocity
and Rayleigh wave ellipticity

O Validation of geological models from geophysical and
geotechnical surveys using 1D site amplification or 3D
simulation of moderate events

O Examination of applicability of existing attenuation
equations




Estimation of Empirical Site Amplification from
from Earthqguake Data
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Joint Inversion of

/S)

Phase Velocity and
Recelver Function

(Kurose and Yamanaka, 2006)
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Seismic Micro Zoning

0 Seismic Micro Zoning will be
Improved based on various
in-depth surveys.

[0 2 or 3-Dimensional soil
structure model will be
constructed.

2-Dimensional Soil Structure Model Seismic Hazard Map in Lima
(CISMID)

Seismic Risk of Slopes (2)

O Itis known that the response due to an earthquake tends to
become large at the shoulder of a slope.
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Seismic Risk of Slopes (3)

[0 One of the reasons is believed that the surface soil of a slope is
“weakened” due to weathering.

[0 The existence of this weakened soil has a negative influence to
the seismic risk from various aspects.
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H/V Spectral Ratio

[0 This is another example of the effect of a slope. The results of
microtremor measurement are also affected by the slope.
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Research Plan for Evaluation of Risk of Slopes

]
[0 The research plan includes:

B Select a few target sites in Lima, where houses are densely
built.

Collect soil investigation data, if any.
Conduct soil investigation, if possible.
Conduct a series of microtremor measurements.

Construct soil models
and perform finite
element analyses.

B Evaluate seismic risks
of the area with slopes
based on these data
along with the results
from other groups in
this project.




