

Universidad Nacional de Ingeniería Facultad de Ingeniería Civil Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres

Primer Workshop Perú-Japón

MEJORA DE TECNOLOGÍAS PARA LA MITIGACIÓN DE DESASTRES CAUSADOS POR SISMO Y TSUNAMI

15 y 16 de Marzo de 2010

ACCIONES QUE CONTRIBUYEN A LA ESTIMACIÓN DEL PELIGRO SÍSMICO

Jorge Aguirre González, Alejandro Ramírez Gaitán, Miguel Rodríguez González, Ricardo Vázquez Rosas, Horacio Mijares Arellano y Orlando Fabela Rodríguez

ACTIONS THAT CONTRIBUTE TO THE SEISMIC HAZARD ESTIMATION

× Probabilistic Approach

- + PGA Distribution espected for a given period of time
 - × Definition of seismogenic Zones
 - × Ground Motion Atenuation Relation
- × Deterministic Approach
 - + Waveforms from a specific earthquake scenario.
 - × Details of Seismic Source (characterization)
 - × Details of Path.
 - × Details of Site Effect.

SITE EFFECTS

SEISMIC SOURCE

EARTHQUAKE STRONG GROUND MOTIONS

PATH

SEISMIC SOURCE CHARACTERIZATION INER and OUTER PARAMETERS

> SEISMIC WAVES PATH GMAR ATENUATION

LOCAL GROUND CONDITIONS Site effects

SITE EFFECTS

HOW TO EVALUATE THE SITE EFFECTS?

HOW TO EVALUATE THE SITE EFFECTS?

By Knowing the physical characteristics of the surfitial layers:

- Thickness
- P wave propagation velocity
- S wave propagation velocity
- Density
- Damping

Exploration methods:

- Seismic Refraction
- Crosshole
- Downhole
- Refletion
- Methods that use microtremors
 - HVSR, ReMi, f-k, SPAC

Uso "tradicional" de Microtremores

Propoused by Aki (1957). Microtremors in instrumental arrays. Rayleigh waves phase velocity dispersion curves estimation, through the spatial autocorrelation.

Velocity structure * At least 3 stations

SPAC METHOD MICROTREMORS ARRAY OBSERVATION

EXAMPLES OF MICROTREMOR ARRAY OBSERVATION USING TRIANGLES

Estation 01

Fo=0.16 14 times H/V

Estation 02

Estation 03 Band pass filter 0.1-10 Hz

COMPARISON WITH THE GEOLOGICAL MODEL

APSIS: FREE SOFTWARE

🕶 Acerca de...

Apsis V1.0

Desarrollado por: M.I. Lauro Satiago Cruz

David Tapia Pozos Dr. Jorge Aguirre González

Ing. Horacio Mijares Arellano

Copyright (c) 2008 National Instruments Corporation, Todos los derechos reservados

FUNCTION 1: CONTROL AND RECORDING OF MOTIONS USING THE SEISMIC UNIT SR04

LSantiagoC@iingen.unam.mx

ADC Autoescala Y Scala X 1049576 1048576 5969 -5304 12777 13080 2222 16:36:39 16:36:39 16:36:29 :OM1 (Canal 2 :OM1 (Canal 3 :OM3 (Canal 1 :OM3 (Canal 2 Ventana de mensajes 05/11/2008 00:32:40 Recibiendo datos de COM1 05/11/2008 00:32:40 Recibiendo datos de COM3

FUNCTION 2: READING AND DEPLOYMENT OF A SAC FORMAT FILE

FUNCTION 3: SPAC METOD PROCESSING (EQUILATERAL TRIANGLE)

MEXICO CITY 3D MODEL

PATH

ATENUATION

Temporary Michoacán Atenuation Network

Earthquakes Analyzed in This Study						
Event No	Date (d/m/y)	Latitude (°N)	Longitude (°W)	Depth (Km)	Mw	Mo (dvne-cm)
1	31/05//2007	18.66	-104.14	11	5.1	5.62x10 ²³
2	31/05//2008	18.2	-103.49	5	4.5	7.08x10 ²²
3	06/01/2007	18.72	-104.07	20	4.8	2.00x10 ²²
4	17/06/2007	18.22	-103.44	12	4.4	5.01x10 ²²
5	27/06/2007	18.75	-104.07	8	4.3	3.55x10 ²²
6	07/05/2007	18.19	-103.44	5	4.1	1.78x10 ²²
7	07/08/2007	18.16	-102.83	16	4.2	2.51x10 ²²

Data Analysis

Resampling

QUALITY FACTOR VS FREQUENCY

THIS WORK COMPARED WITH OTHERS

AMPLITUDE VS DISTANCE

REGIONAL GEOLOGY OF MICHOACAN STATE

CONCLUSIONS

(ATENUATION)

- Temporary Network in Michoacán State
- Seven eathquakes used (4.1 < Mw < 5.1)
- Distances from about 20 to 320 Km
- Q = 105 f^{0.74}
- Smaller than previous relations for Guerrero
- Neo-volcanic trans-mexican belt
- Risky to extrapolate the atenuation relations

SOURCE

TECOMAN EARTHQUAKE 22/I/2003 Mw 7.5

EGF METHOD APLICATION

Empirical Green's Function Method

$$A(t) = \sum_{i=1}^{Nx} \sum_{j=1}^{Nw} \left(\frac{r}{r_{ij}}\right) F(t - t_{ij}) * a(t).$$

Model Validation

SOURCE CHARACTERIZATION USING **EMPIRICAL GREEN 'S FUNCTIONS METHOD**

150 Velocity

الالاسا

E C Z Comp.

cm/s

Z Comp

150 20

FOURIER SPECTRA STATION MANZ (3 SMGA)GREEN - SYNTETICSBLUE - OBSERVED

COMPARISON WITH THE DISLOCATION MODEL OBTAINED BY YAGI ET AL. (2004).

Simulations for stacions at rock site within the Colima State

Simulation for stations soil within Colima State

Simulation for stations outside of Colima

COMPARISON WITH TWO ATENUATION RELATIONS

Ordaz et al.(1989)

Garcia et al. (2005)

(d)

Hipocentral listance (Km)

1000

CONCLUSIONS (SOURCE)

- Succesfull aplication of EGFM
- High frequency model that are of interest to earthquake engineering
- Waveform simulation at sites where there was no seismic station during the Tecomán earthquake.

Model aplication.

- 1. Acceleration, Velocity ,and displacement waveforms, Fourier spectra, PGA, I_{MM}.
- 2. We can aplied our knowledge od the seismic source for the modeling of future earthquakes.