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SYNOPSIS 

Remote sensing is an effective method for evaluating building damage after a large-scale natural 
disaster, such as an earthquake or a typhoon. In recent years, with the development of computer 
vision technology, deep learning algorithms have been used for damage assessment from aerial 
images. In April 2016, a series of earthquakes hit the Kyushu region, Japan, and caused severe 
damage in the Kumamoto and Oita Prefectures. Numerous buildings collapsed because of the strong 
and continuous shaking. In this study, a deep learning model called Mask R-CNN was modified to 
extract residential buildings and estimate their damage levels from post-event aerial images. Our 
Mask R-CNN model employs an improved feature pyramid network and online hard example mining. 
Furthermore, a non-maximum suppression algorithm across multiple classes was also applied to 
improve prediction. The aerial images captured on April 29, 2016 (two weeks after the main shock) 
in Mashiki Town, Kumamoto Prefecture, were used as the training and test sets. Compared with the 
field survey results, our model achieved 95% overall accuracy for building extraction and 88% 
overall accuracy for the damage classification. 

 
 
 
1.  Introduction 

A series of earthquakes hit Kumamoto Prefecture, Japan, in 1 
April 2016, including two events: a moment magnitude (Mw) 2 
6.2 foreshock and a Mw 7.0 mainshock. A severe damage to 3 
buildings was observed in Kumamoto Prefecture. A total of 4 
8,657 houses completely collapsed, and approximately 190 5 
thousand residential buildings partially collapsed. 6 

It is important to grasp the damage situation immediately 7 
after a disaster occurred. Although a field survey could provide 8 
more detailed information, it also requires tremendous 9 
manpower and time. Under such circumstances, remote sensing 10 
technology becomes an alternate way to collect damage 11 
information effectively. With the high-resolution aerial images 12 
taken by a UAV or aircraft, the image provides a more detailed 13 
and richer view of the real world, thereby enabling further 14 
analysis of features that are not traditionally visible in satellite 15 
imagery. 16 

In the meanwhile, deep learning algorithms as one category 17 
of the machine learning methods, have attracted widespread 18 
attention in the field of image recognition. Instead of manually 19 
operation, deep learning algorithms would learn the image 20 
features automatically and output the results.  21 

Combining the benefits of deep learning and remote sensing, 22 
our study performs object detection and extraction from 23 
wide-area aerial images, and damage classification of 24 
residential buildings by using the instance segmentation 25 
algorithm Mask R-CNN1). 26 

 27 
2.  Dataset and Image Processing 28 

Five high-resolution post-event aerial images of Mashiki 29 

town were used to create the dataset for building damage 30 
assessment. One aerial image consists of 14430 × 9420 pixels. 31 
The aerial images were taken by the Geospatial Information 32 
Authority of Japan (GSI) using UltraCamX on April 29, 2016, 33 
two weeks after a series of earthquakes. The five aerial images 34 
were mosaiced and covered the center of Mashiki town, as 35 
shown in Figure 1. The most affected area was selected in the 36 
training and test sets. In Figure 1, the training area is covered 37 
with red, whereas the green color represents the test area. 38 

 39 

 40 
Figure 1 Training and test sets generated from the five 41 

high-solution aerial images taken by GSI on April 29, 2016 42 
 43 

Unlike the dataset of natural images, the viewpoint of remote 44 
sensing image datasets usually rests on the top, which makes the 45 
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target objects appear relatively small. A single large-scale aerial 46 
image can contain over thousands of buildings. In this case, we 47 
cut the original image into 500 × 500 pixel square images to 48 
obtain a total of 510 training images and 157 test images. The 49 
buildings located at the edge of the cut images would appear in 50 
two or more images. In this case, the key feature might be 51 
separated at different images, which leads to a decrease in 52 
detection accuracy. To solve this problem, we mark their 53 
complete shapes by shifting the cutting frame. 54 

These cut images were labelled manually by the LabelMe 55 
tool into four damage categories. The building damage 56 
categories were cited using the resources of the Architectural 57 
Institute of Japan (AIJ), from the report of the Ministry of Land, 58 
Infrastructure, Transport and Tourism (MLIT)2). Kumamoto 59 
Earthquake Disaster Investigation Committee of the Kyushu 60 
Branch of the AIJ surveyed 2,652 buildings and classified them 61 
with damage grade based on the research of Okada and Takai3). 62 
A detailed description of the damage classifications is shown in 63 
Table 1. Several samples of the labelled buildings are shown in 64 
Figure 2. 65 

 66 
Table 1. Definition of the damage grades used in this study 67 

Damage grades Damage grades (MLIT2)) Okada, Takai3) 

Level_1 No damage D0 
Level_2 Slight damage D1 – D3 
Level_3 Severe damage D4 
Level_4 Collapsed D5 – D6 

 68 

 69 
Figure 2. Label examples of the buildings in levels 1 to 4 70 

 71 
3.  Model and Modification 72 

The workflow of Mask R-CNN is as follows: 1) Mask 73 
R-CNN feeds the image to the residual network to extract 74 
features and generate multiscale feature maps; 2) side-joining is 75 
performed, and the feature maps at each stage are upsampled 76 
twice and tensor-summed with the adjacent underlying layers; 3) 77 
the feature maps are fed into RPN to generate candidate regions 78 
on the feature maps with different sizes that are input along with 79 
the feature maps to RoI Align to obtain the bounding boxes; and 80 
4) the bounding boxes are classified and regressed, and a 81 
high-quality instance segmentation mask of the detected object 82 
is generated. The structure shown in Figure 3. 83 

 84 
Figure 3. Structure of the Mask R-CNN algorithm 85 

 86 
Although Mask R-CNN has a high-level capability in object 87 

detection, it still has some shortcomings when applied directly 88 
to damage detection from aerial images: 89 
1. The localization information for large objects is sometimes 90 
inaccurate, while the details of medium and small objects may 91 
sometimes be lost in the feature map. 92 
2. The target buildings that cover a small proportion of the 93 
whole image will generate more negative samples in the region 94 
proposal layer, which will decrease the accuracy of the model. 95 
3. The two different outputs may overlap with each other for the 96 
same object. 97 

To get better detection performance of Mask RCNN 98 
algorithm in aerial images, we employed some modification on 99 
the original network shown in Figure 3(i), (ii) and (iii). The 100 
first modification in Figure 3(i) is Path Aggregation Network4). 101 
The basic idea of this modification is to shorten the information 102 
transmission path and use the precise location information of 103 
the lower-level features fully by adding bottom-up branches 104 
with reverse lateral connections to the feature pyramids. The 105 
second modification in Figure 3(ii) is Online Hard Example 106 
Mining5). This method solves the problem of imbalance between 107 
positive and negative samples during training by expand the 108 
original RoI network into two RoIs, one RoI with only forward 109 
propagation for calculating the loss and one RoI with normal 110 
forward-backward propagation, using the hard example as the 111 
input to calculate the loss and pass the gradient. The third 112 
modification is called multiclass Non-Maximum Suppression. It 113 
is a piece of code that we wrote ourselves to fix the overlap of 114 
the result. We wrote an Intersection over Union (IoU) checking 115 
process in Figure 3(iii). Only when the IoU of two bounding 116 
box exceeds a threshold value, the bounding box with the low 117 
confidence score will be removed. 118 
 119 
4.  Evaluation and Discussion 120 

The latest object detection works tend to use the COCO 121 
dataset to demonstrate the effectiveness of their models. For the 122 
COCO dataset, an interpolated AP calculation is used by 123 
sampling 100 points on the PR curve. Moreover, the threshold 124 
of IoU is taken in the range of 0.5-0.95 with intervals of 0.5, 125 
and average of AP values are calculated with these settings [52]. 126 
This average AP (mean AP) value will be taken as the final 127 
result. 128 

Due to the narrow spacing between the buildings and 129 
unregular shapes, before training our modified model, we ran 130 
several tests on the original Mask R-CNN model to determine 131 
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the best RPN parameters for this dataset. The mAP of model-1 132 
with adapted RPN parameters is approximately 4% higher than 133 
that of the original model. Then, we experimented with several 134 
modified models based on the Mask R-CNN model-1. Several 135 
combinations of PANet and OHEM with different epochs are 136 
tested, for which results are shown in Table 2. 137 

 138 
Table 2 Comparison of the test results using modified models 139 

based on the Mask R-CNN model-5 140 
Model Epochs PANet OHEM Bounding 

Box mAP 
Segment 

mAP 
1 300 No No 0.332 0.333 
2 80 No No 0.345 0.342 
3 80 No Yes 0.350 0.356 
4 80 Yes No 0.352 0.368 
5 80 Yes Yes 0.361 0.370 
6 40 Yes Yes 0.365 0.373 

 141 
When PANet and OHEM were applied independently, they 142 

both improved the results by approximately 2%. When they 143 
were both applied, the improvement reached 3-4%. Finally, we 144 
performed additional tests on model-5 with different numbers of 145 
epochs and chose 40 epochs as the final epoch value. The mAP 146 
of the bounding box was 0.365 and that of the segmentation was 147 
0.373 in model-6. 148 

In the test area, 95.1% of the buildings were identified 149 
successfully. The precision of building detection was 91.4%. 150 
Even the severely damaged buildings (Level_3 and Level_4) 151 
could be extracted with 94.3% accuracy. The precision of 152 
building detection reached 92.0%. The misdetections were 153 
caused by delineations between two buildings or hidden 154 
shadows of other buildings. On the other hand, overdetection 155 
was caused by buildings that were not investigated by the AIJ. 156 
However, our model detected those buildings and estimated 157 
their damage grades. The classification precision of Level_1 158 
exceeded 83%, and recall was 76%. The precision and recall of 159 
Level_2 were 72% and 88%, respectively. The precision of 160 
Level_3 was 83%, and recall was greater than 70%. For the total 161 
collapsed buildings in Level_4, the precision exceeded 93%, 162 
and recall was approximately 85%. The OAA of the 163 
classification reached 82%. The confusion matrix for the test 164 
area is shown in Table 3, which showed acceptable results.  165 

 166 
Table 3. Confusion matrix of the damage classification for the 167 

buildings in the test area 168 

 169 
Based on these results, we applied model-10 to the whole 170 

target area of Mashiki town and obtained a prediction map of 171 
building damage, as shown in Figure 4. From the prediction 172 
map, we can see that most of the collapsed buildings (Level_4) 173 
were around the No. 28 Prefectural Road. More than half of the 174 
buildings were classified into Level_1 and Level_2, indicating 175 

no damage or less than moderate damage, respectively. 176 
 177 

 178 
Figure 4. Obtained prediction map of all the buildings in the 179 

target area using the proposed model-6. 180 
 181 

  To verify the accuracy of our prediction map, we compare it 182 
with the report of the AJI. In the 2016 Kumamoto Earthquake 183 
Report, the ratios of collapsed buildings were summarized in 184 
57-m grids. The ratio of the number of collapsed buildings to 185 
that of all buildings in the grid was calculated. The grid map of 186 
the collapsed ratio is shown in Figure 5(a). There were 414 187 
grids in the target area of the field survey, which were classified 188 
into five classes according to the collapse rates. There were 262 189 
grids in the class of 0%, 47 grids in the class of 0-25%, 53 grids 190 
in the class of 25-50%, 37 grids in the class of 50-75% and 10 191 
grids in the class of 75-100%. To verify our predication results, 192 
we calculated the ratio of Level_4 buildings in Figure 4 using 193 
the same grid scale, and it is shown in Figure 5(b). There are 194 
260 grids in the class of 0%, 45 grids in the class of 0-25%, 62 195 
grids in the class of 25-50%, 36 grids in the class of 50-75% and 196 
11 grids in the class of 75-100%. 197 
 198 

199 

 200 
Figure 5. Comparison of (a) the collapsed ratio in the report of 201 

the field survey and (b) our prediction in a 57-m grid unit. 202 

 
Prediction for the test area 

Level_1 Level_2 Level_3 Level_4 

True  
Label 

Level_1 34 11 0 0 
Level_2 7 71 1 2 
Level_3 0 9 28 3 
Level_4 0 8 5 75 
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For each class of collapsed ratios, we obtained a decent result. 203 
The precision and recall for the collapsed ratio of 0% reach 204 
99.2% and 98.9%, respectively. For the collapse ratio of 0-25%, 205 
the precision is 93.3%, and the recall is 89.4%. Additionally, the 206 
grids associated with the collapse ratio of 25-50% have 85.3% 207 
and 98.1% precision and recall, respectively. The precision and 208 
recall for a collapse ratio of 50-75% reach 100% and 88.5%, 209 
respectively. For the collapse ratio of 75-100%, the precision is 210 
81.8%, and the recall is 90.0%. The OAA of all the classes of 211 
collapsed ratios reached approximately 96%. The confusion 212 
matrix is shown in Table 4. Most of the grids were classified 213 
either in the accurate class or neighbouring classes. A single 214 
non-collapsed grid was mistakenly classified as 25%−50%, and 215 
another grid with a collapse ratio of 75%−100% was 216 
underestimated as 25%−50%. These were both caused by the 217 
differing counts of buildings. While some houses in Japan have 218 
primary buildings, secondary buildings, and warehouses, the 219 
field survey from the AIJ only recorded damage to primary 220 
buildings. In addition, unoccupied houses were not counted in 221 
the report. This led to the difference between the prediction 222 
results and the true data. 223 
 224 

Table 4. Confusion matrix of grid prediction in the whole 225 
investigated area 226 

 
Prediction 

0% 0%−25% 25%−50% 50%−75% 75%−100% 

Field 
Survey 

0% 259 2 1 0 0 
0% − 25% 2 42 3 0 0 

25% − 50% 0 1 52 0 0 
50% − 75% 0 0 4 37 1 

75% − 100% 0 0 1 0 9 
 227 

Since the prediction map in Figure 5 included the area used 228 
for the training set, we selected the grids containing only the 229 
test area. In a total of 37 grids reported by the field survey, there 230 
were 9 grids with the collapsed ratio of 0%, 7 grids with that of 231 
0-25%, 9 grids with that of 25-50%, 9 grids with that of 50-75%, 232 
and 3 grids with that of 75-100%. For our prediction results, 9 233 
grids were classified as the collapsed ratio of 0%, 7 grids as 234 
0-25%, 12 grids as 25-50%, 7 grids as 50-75% and 2 grids as 235 
75-100%. The precision and recall for the grids with collapse 236 
ratios of 0% and 0-25% were 100%. The precision and recall for 237 
the grids with collapse ratios of 25-50% were 75%, and the 238 
recall remained at 100%. For the grids with collapse ratios of 239 
50-75% and 75-100%, the precision reached both 100%, and the 240 
recall reached 77.78% and 66.67%, respectively. The OAA of 241 
prediction for the test area reached 91%, which showed a high 242 
capability to detect severely damaged areas. 243 

We also compared our results with previous studies for 244 
damage estimation of the buildings after the 2016 Kumamoto 245 
earthquake. Liu et al. achieved an OAA of approximately 46.8% 246 
in the classification of damaged buildings by using 247 
multitemporal PALSAR-2 data6). Although SAR images can be 248 
obtained despite weather conditions, damage assessment from 249 
SAR images with high accuracy is still difficult. Naito et al. 250 
developed a CNN model that performed an 88.4% OAA for the 251 
damage classification task based on the evaluation indicators of 252 
personal visual interpretation7). Our model achieves the same 253 
level of OAA as 88.1% by using the report of the MLIT field 254 

survey. Compared with the verification using visual 255 
interpretation, the performance of our model is more objectively 256 
evaluated. In addition, our modified NMS approach gave a 257 
prediction map with an accuracy of 96% OAA for the collapsed 258 
ratio, which would be useful for the emergency response after 259 
an earthquake. 260 

 261 
5.  Conclusions 262 
  In this study, we aim to develop a faster means to extract 263 
damaged buildings and estimate their damage levels using high 264 
resolution aerial images taken after the 2016 Kumamoto 265 
earthquake. We modified the original Mask R-CNN model by 266 
adding PANet, OHEM and the modified NMS, which improved 267 
the mAP of the model from 29% to 37% and enhanced the 268 
capability of detecting small objects with similar features. By 269 
training and testing the aerial images, 95.1% of the buildings 270 
were detected successfully, and the overall accuracy of the 271 
damage classification was 88%. 272 

The best model was applied to the entire target area of 273 
Mashiki Town, Kumamoto Prefecture, Japan, and a prediction 274 
map of building damage was obtained. The prediction results 275 
were verified by comparison with the field survey report of the 276 
MLIT. The ratio of the collapsed buildings in the 57-m grids 277 
was calculated. The overall accuracy of the whole grid was 278 
approximately 96%, whereas the accuracy for the grid 279 
containing only the test area was approximately 91%. The 280 
results support that the proposed model is a viable method of 281 
quickly extracting damaged buildings due to earthquakes from 282 
postevent aerial images. For further research, we will focus on 283 
different regions or different natural disasters by using transfer 284 
learning to create a general solution for the damage detection 285 
after natural disasters. 286 
 287 
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