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BUILDING EXTRACTION AND DAMAGE ASSESSMENT BASED ON MODIFIED MASK R-CNN MODEL USING
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POST-EVENT AERIAL IMAGES AFTER THE 2016 KUMAMOTO EARTHQUAKE
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SYNOPSIS
Remote sensing is an effective method for evaluating building damage after a large-scale natural
disaster, such as an earthquake or a typhoon. In recent years, with the development of computer
vision technology, deep learning algorithms have been used for damage assessment from aerial
images. In April 2016, a series of earthquakes hit the Kyushu region, Japan, and caused severe
damage in the Kumamoto and Oita Prefectures. Numerous buildings collapsed because of the strong
and continuous shaking. In this study, a deep learning model called Mask R-CNN was modified to
extract residential buildings and estimate their damage levels from post-event aerial images. Our

Mask R-CNN model employs an improved feature pyramid network and online hard example mining.

Furthermore, a non-maximum suppression algorithm across multiple classes was also applied to
improve prediction. The aerial images captured on April 29, 2016 (two weeks after the main shock)
in Mashiki Town, Kumamoto Prefecture, were used as the training and test sets. Compared with the
field survey results, our model achieved 95% overall accuracy for building extraction and 88%
overall accuracy for the damage classification.

Introduction
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A series of earthquakes hit Kumamoto Prefecture, Japan, in
April 2016, including two events: a moment magnitude (Mw)
6.2 foreshock and a Mw 7.0 mainshock. A severe damage to
buildings was observed in Kumamoto Prefecture. A total of
8,657 houses completely collapsed, and approximately 190
thousand residential buildings partially collapsed.

It is important to grasp the damage situation immediately
after a disaster occurred. Although a field survey could provide
more detailed information, it also requires tremendous
manpower and time. Under such circumstances, remote sensing
technology becomes an alternate way to collect damage
information effectively. With the high-resolution aerial images
taken by a UAV or aircraft, the image provides a more detailed
and richer view of the real world, thereby enabling further
analysis of features that are not traditionally visible in satellite
imagery.

In the meanwhile, deep learning algorithms as one category
of the machine learning methods, have attracted widespread
attention in the field of image recognition. Instead of manually
operation, deep learning algorithms would learn the image
features automatically and output the results.

Combining the benefits of deep learning and remote sensing,
our study performs object detection and extraction from
wide-area aerial images, and damage classification of
residential buildings by using the instance segmentation
algorithm Mask R-CNNV,

2. Dataset and Image Processing
Five high-resolution post-event aerial images of Mashiki
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town were used to create the dataset for building damage
assessment. One aerial image consists of 14430 x 9420 pixels.
The aerial images were taken by the Geospatial Information
Authority of Japan (GSI) using UltraCamX on April 29, 2016,
two weeks after a series of earthquakes. The five aerial images
were mosaiced and covered the center of Mashiki town, as
shown in Figure 1. The most affected area was selected in the
training and test sets. In Figure 1, the training area is covered
with red, whereas the green color represents the test area.
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Figure 1 Training and test sets generated from the five
high-solution aerial images taken by GSI on April 29, 2016

Unlike the dataset of natural images, the viewpoint of remote
sensing image datasets usually rests on the top, which makes the



target objects appear relatively small. A single large-scale aerial
image can contain over thousands of buildings. In this case, we
cut the original image into 500 x 500 pixel square images to
obtain a total of 510 training images and 157 test images. The
buildings located at the edge of the cut images would appear in
two or more images. In this case, the key feature might be
separated at different images, which leads to a decrease in
detection accuracy. To solve this problem, we mark their
complete shapes by shifting the cutting frame.

These cut images were labelled manually by the LabelMe
tool into four damage -categories. The building damage
categories were cited using the resources of the Architectural
Institute of Japan (AlJ), from the report of the Ministry of Land,
Infrastructure, Transport and Tourism (MLIT)?. Kumamoto
Earthquake Disaster Investigation Committee of the Kyushu
Branch of the AlJ surveyed 2,652 buildings and classified them
with damage grade based on the research of Okada and Takai®).
A detailed description of the damage classifications is shown in
Table 1. Several samples of the labelled buildings are shown in
Figure 2.

Table 1. Definition of the damage grades used in this study

Damage grades | Damage grades (MLIT?) | Okada, Takai®
Level 1 No damage DO
Level 2 Slight damage D1 -D3
Level 3 Severe damage D4
Level 4 Collapsed D5 - D6

( Level_1 (No Dam

Figure 2. Label examples of the buildings in levels 1 to 4

3. Model and Modification

The workflow of Mask R-CNN is as follows: 1) Mask
R-CNN feeds the image to the residual network to extract
features and generate multiscale feature maps; 2) side-joining is
performed, and the feature maps at each stage are upsampled
twice and tensor-summed with the adjacent underlying layers; 3)
the feature maps are fed into RPN to generate candidate regions
on the feature maps with different sizes that are input along with
the feature maps to Rol Align to obtain the bounding boxes; and
4) the bounding boxes are classified and regressed, and a
high-quality instance segmentation mask of the detected object
is generated. The structure shown in Figure 3.
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Figure 3. Structure of the Mask R-CNN algorithm

Although Mask R-CNN has a high-level capability in object
detection, it still has some shortcomings when applied directly
to damage detection from aerial images:

1. The localization information for large objects is sometimes
inaccurate, while the details of medium and small objects may
sometimes be lost in the feature map.

2. The target buildings that cover a small proportion of the
whole image will generate more negative samples in the region
proposal layer, which will decrease the accuracy of the model.
3. The two different outputs may overlap with each other for the
same object.

To get better detection performance of Mask RCNN
algorithm in aerial images, we employed some modification on
the original network shown in Figure 3(i), (ii) and (iii). The
first modification in Figure 3(i) is Path Aggregation Network®.
The basic idea of this modification is to shorten the information
transmission path and use the precise location information of
the lower-level features fully by adding bottom-up branches
with reverse lateral connections to the feature pyramids. The
second modification in Figure 3(ii) is Online Hard Example
Mining®. This method solves the problem of imbalance between
positive and negative samples during training by expand the
original Rol network into two Rols, one Rol with only forward
propagation for calculating the loss and one Rol with normal
forward-backward propagation, using the hard example as the
input to calculate the loss and pass the gradient. The third
modification is called multiclass Non-Maximum Suppression. It
is a piece of code that we wrote ourselves to fix the overlap of
the result. We wrote an Intersection over Union (IoU) checking
process in Figure 3(iii). Only when the IoU of two bounding
box exceeds a threshold value, the bounding box with the low
confidence score will be removed.

4. Evaluation and Discussion

The latest object detection works tend to use the COCO
dataset to demonstrate the effectiveness of their models. For the
COCO dataset, an interpolated AP calculation is used by
sampling 100 points on the PR curve. Moreover, the threshold
of IoU is taken in the range of 0.5-0.95 with intervals of 0.5,
and average of AP values are calculated with these settings [52].
This average AP (mean AP) value will be taken as the final
result.

Due to the narrow spacing between the buildings and
unregular shapes, before training our modified model, we ran
several tests on the original Mask R-CNN model to determine



the best RPN parameters for this dataset. The mAP of model-1
with adapted RPN parameters is approximately 4% higher than
that of the original model. Then, we experimented with several
modified models based on the Mask R-CNN model-1. Several
combinations of PANet and OHEM with different epochs are

tested, for which results are shown in Table 2.

Table 2 Comparison of the test results using modified models

based on the Mask R-CNN model-5

Model | Epochs | PANet | OHEM | Bounding | Segment

Box mAP mAP
1 300 No No 0.332 0.333
2 80 No No 0.345 0.342
3 80 No Yes 0.350 0.356
4 80 Yes No 0.352 0.368
5 80 Yes Yes 0.361 0.370
6 40 Yes Yes 0.365 0.373

When PANet and OHEM were applied independently, they
both improved the results by approximately 2%. When they
were both applied, the improvement reached 3-4%. Finally, we
performed additional tests on model-5 with different numbers of
epochs and chose 40 epochs as the final epoch value. The mAP
of the bounding box was 0.365 and that of the segmentation was
0.373 in model-6.

In the test area, 95.1% of the buildings were identified
successfully. The precision of building detection was 91.4%.
Even the severely damaged buildings (Level 3 and Level 4)
could be extracted with 94.3% accuracy. The precision of
building detection reached 92.0%. The misdetections were
caused by delineations between two buildings or hidden
shadows of other buildings. On the other hand, overdetection
was caused by buildings that were not investigated by the AIJ.
However, our model detected those buildings and estimated
their damage grades. The classification precision of Level 1
exceeded 83%, and recall was 76%. The precision and recall of
Level 2 were 72% and 88%, respectively. The precision of
Level 3 was 83%, and recall was greater than 70%. For the total
collapsed buildings in Level 4, the precision exceeded 93%,
and recall was approximately 85%. The OAA of the
classification reached 82%. The confusion matrix for the test
area is shown in Table 3, which showed acceptable results.

Table 3. Confusion matrix of the damage classification for the
buildings in the test area

Prediction for the test area

Level 1 Level 2 Level 3 Level 4
Level 1 34 11 0 0
True Leve1_2 71 1 2
Label Level 3 9 28 3
Level 4 5 75

Based on these results, we applied model-10 to the whole
target area of Mashiki town and obtained a prediction map of
building damage, as shown in Figure 4. From the prediction
map, we can see that most of the collapsed buildings (Level 4)
were around the No. 28 Prefectural Road. More than half of the
buildings were classified into Level 1 and Level 2, indicating
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no damage or less than moderate damage, respectively.
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Figure 4. Obtained prediction map of all the buildings in the
target area using the proposed model-6.

To verify the accuracy of our prediction map, we compare it
with the report of the AJI. In the 2016 Kumamoto Earthquake
Report, the ratios of collapsed buildings were summarized in
57-m grids. The ratio of the number of collapsed buildings to
that of all buildings in the grid was calculated. The grid map of
the collapsed ratio is shown in Figure 5(a). There were 414
grids in the target area of the field survey, which were classified
into five classes according to the collapse rates. There were 262
grids in the class of 0%, 47 grids in the class of 0-25%, 53 grids
in the class of 25-50%, 37 grids in the class of 50-75% and 10
grids in the class of 75-100%. To verify our predication results,
we calculated the ratio of Level 4 buildings in Figure 4 using
the same grid scale, and it is shown in Figure 5(b). There are
260 grids in the class of 0%, 45 grids in the class of 0-25%, 62
grids in the class of 25-50%, 36 grids in the class of 50-75% and
11 grids in the class of 75-100%.
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Figure 5. Comparison of (a) the collapsed ratio in the report of
the field survey and (b) our prediction in a 57-m grid unit.



For each class of collapsed ratios, we obtained a decent result.
The precision and recall for the collapsed ratio of 0% reach
99.2% and 98.9%, respectively. For the collapse ratio of 0-25%,
the precision is 93.3%, and the recall is 89.4%. Additionally, the
grids associated with the collapse ratio of 25-50% have 85.3%
and 98.1% precision and recall, respectively. The precision and
recall for a collapse ratio of 50-75% reach 100% and 88.5%,
respectively. For the collapse ratio of 75-100%, the precision is
81.8%, and the recall is 90.0%. The OAA of all the classes of
collapsed ratios reached approximately 96%. The confusion
matrix is shown in Table 4. Most of the grids were classified
either in the accurate class or neighbouring classes. A single
non-collapsed grid was mistakenly classified as 25%—50%, and
another grid with a collapse ratio of 75%—100% was
underestimated as 25%—50%. These were both caused by the
differing counts of buildings. While some houses in Japan have
primary buildings, secondary buildings, and warehouses, the
field survey from the AIJ only recorded damage to primary
buildings. In addition, unoccupied houses were not counted in
the report. This led to the difference between the prediction
results and the true data.

Table 4. Confusion matrix of grid prediction in the whole
investigated area

Prediction
0% 0%25% 25%—50% 50%—75% 75%—100%
0% 259 2 1 0 0
0% — 259 2 42 3 0 0
Field " o
25%-50% O 1 52 0 0
Survey

50%—75% O 0 4 37 1

75% —100% O 0 1 0 9

Since the prediction map in Figure S included the area used
for the training set, we selected the grids containing only the
test area. In a total of 37 grids reported by the field survey, there
were 9 grids with the collapsed ratio of 0%, 7 grids with that of
0-25%, 9 grids with that of 25-50%, 9 grids with that of 50-75%,
and 3 grids with that of 75-100%. For our prediction results, 9
grids were classified as the collapsed ratio of 0%, 7 grids as
0-25%, 12 grids as 25-50%, 7 grids as 50-75% and 2 grids as
75-100%. The precision and recall for the grids with collapse
ratios of 0% and 0-25% were 100%. The precision and recall for
the grids with collapse ratios of 25-50% were 75%, and the
recall remained at 100%. For the grids with collapse ratios of
50-75% and 75-100%, the precision reached both 100%, and the
recall reached 77.78% and 66.67%, respectively. The OAA of
prediction for the test area reached 91%, which showed a high
capability to detect severely damaged areas.

We also compared our results with previous studies for
damage estimation of the buildings after the 2016 Kumamoto
earthquake. Liu et al. achieved an OAA of approximately 46.8%
in the classification of damaged buildings by using
multitemporal PALSAR-2 data®. Although SAR images can be
obtained despite weather conditions, damage assessment from
SAR images with high accuracy is still difficult. Naito et al.
developed a CNN model that performed an 88.4% OAA for the
damage classification task based on the evaluation indicators of
personal visual interpretation”. Our model achieves the same
level of OAA as 88.1% by using the report of the MLIT field
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survey. Compared with the verification wusing visual
interpretation, the performance of our model is more objectively
evaluated. In addition, our modified NMS approach gave a
prediction map with an accuracy of 96% OAA for the collapsed
ratio, which would be useful for the emergency response after
an earthquake.

5. Conclusions

In this study, we aim to develop a faster means to extract
damaged buildings and estimate their damage levels using high
resolution aerial images taken after the 2016 Kumamoto
earthquake. We modified the original Mask R-CNN model by
adding PANet, OHEM and the modified NMS, which improved
the mAP of the model from 29% to 37% and enhanced the
capability of detecting small objects with similar features. By
training and testing the aerial images, 95.1% of the buildings
were detected successfully, and the overall accuracy of the
damage classification was 88%.

The best model was applied to the entire target area of
Mashiki Town, Kumamoto Prefecture, Japan, and a prediction
map of building damage was obtained. The prediction results
were verified by comparison with the field survey report of the
MLIT. The ratio of the collapsed buildings in the 57-m grids
was calculated. The overall accuracy of the whole grid was
approximately 96%, whereas the accuracy for the grid
containing only the test area was approximately 91%. The
results support that the proposed model is a viable method of
quickly extracting damaged buildings due to earthquakes from
postevent aerial images. For further research, we will focus on
different regions or different natural disasters by using transfer
learning to create a general solution for the damage detection
after natural disasters.
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