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SYNOPSIS 

Damage assessment is an essential issue in emergency response and recovery after the occurrence of 

natural disasters. In this regard, remote sensing is recognized as an effective tool for detecting and 

monitoring affected areas. In this study, we used full-polarimetric high-resolution Pi-SAR2-X 

images to detect the changes in Mashiki Town, which was severely affected by the 2016 Kumamoto 

Earthquake. This earthquake caused the collapse of many buildings, especially residential buildings. 

The backscatter model of a Japanese residential building is complicated due to its triangle roof shape. 

This study attempted to detect damage to triangle roof buildings using the four textures of the 

backscatter intensity from buildings’ footprints and roofs. The affected buildings were identified by 

the high values of the heterogeneous texture and the low values of the homogeneous textures. As a 

result, the combination of two textures in the VV and HV polarizations was the most effective index 

to identify severely affected buildings. 

 

 

 

1. Introduction 

An Mw 6.2 earthquake hit the central part of Kumamoto 

prefecture, Japan, on 14 April 2016. The mainshock with Mw 

7.3 then followed this earthquake occurred on 16 April, close to 

the first event. Due to the series of earthquakes, many damaged 

infrastructures were reported, including the collapse of 

Kumamoto Castle and the shinkansen’s derailment. In addition, 

this earthquake caused significant damage to buildings. More 

than 160 thousand residential buildings were affected.  

In order to grasp the damage situation quickly after a natural 

disaster strikes, remote sensing is recognized as a useful tool. 

Synthetic Aperture Radar (SAR) sensors can observe objects on 

the earth’s surface without depending on sunlight  and cloud 

conditions. The emergency observation of SAR images can be 

provided immediately soon after disasters. However, the lack of 

pre-event data limits their utility in damage detections. 

Therefore, it is vital to grasp the condition of damaged areas 

only from a post-event airborne SAR image. In addition to that, 

texture analysis in remote sensing images has become popular, 

especially for land-cover classification in recent years.  

Thus, this study attempts to detect the most affected buildings 

using the texture characteristics obtained from a single airborne 

Pi-SAR image taken after the 2016 Kumamoto Earthquake. 

Four different textures were investigated for each building. 

Then the effective indices and their combinations were adopted 

to estimate building damages. 

 

2. Study Area and Datasets 

Central of Mashiki Town, near the epicenter of the mainshock, 

was selected as the study area in this study. We focused mainly 

on the area between the Akizu River and Prefectural Road 28, 

where most of the wooden buildings were severely affected by 

this earthquake.  

 
In this study, we used an airborne Pi-SAR2-X image obtained 

by National Institute of Information and Communications 

Technology (NICT) on 17 April 2016, one day after the 

mainshock. The image was acquired in four polarizations 

(HH/HV/VH/VV) with an incidence angle of 37.6°. The 

azimuth angle was 83.0°clockwise from the north. Figure 1 

shows the color composite of the HH, HV and VV polarizations 

in the study area. 

Three pre-processing steps were applied. First, the 

radiometric calibration was done to convert digital numbers into 

the backscattering coefficient (sigma naught σ0), followed by 

geometric correction and speckle filter application. 

 
Figure 1 Color composite of Pi-SAR2-X polarization images in 

the target area of the Mashiki Town, including 42 training 

buildings (yellow dots) and the validation area (red frame) 
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3. Building Extraction Regions 

There are several previous studies regarding the building’s 

backscatter model. Based on these studies1),2), the backscatter of 

a triangle-roof building can be divided into two categories 

depending on its height h and width w, as well as the 

relationship of the SAR incidence angle θ and the roof 

inclination α. In this study, all the buildings are in the type of α 

< θ. The two models with the different relationship of h and w 

are shown in Fig. 2. Most of the target buildings are following 

the model shown in Fig. 2(a), where the backscatter from the 

roof (d and e) are overlapped on the layover from the wall, and 

the backscatter of roof opposite to the sensor (e) located inside 

of the footprint. 

Several studies have extracted damaged buildings by 

focusing the backscatter characteristics in the layover regions. 

However, we found that this method is not very effective for the 

gable roof buildings. An example is shown in Fig. 3. Although 

the first floor of this building collapsed, based on the line 

profile, the strong shifted roof scattering was still confirmed in 

its original layover region. This is difficult to be distinguished 

from non-damaged buildings. Thus, in this study, we proposed 

new extraction regions for the texture analysis, pinpointing to 

the place where the buildings' essential backscatters were: the 

corner reflection near the footprint, and the roof reflection. 

 The extraction regions are created following the footprints 

and the layover positions. The footprints were traced from the 

GIS data published by the Geospatial Information of Authority 

(GSI). Then the layover is generated by moving the footprint 

according to the layover lengths L, calculated using building’s 

height, SAR incidence angle θ, and radar sensors azimuth 

angle3). In this study, the building’s height is obtained from a 

Lidar data. 

Following this, we took the boundary line between the 

footprint and the layover area as the footprint extraction line, 

while the end of the layover (nearest to the radar) as the roof 

extraction line. Figure 4 shows the extraction regions on a 

building. Although most of the backscatter projected on these 

lines, there still are some backscatter drifted from these lines. 

Therefore, we expanded the extraction area with a 0.9-m (3 

pixels) buffer. In addition, if the building has two sides or more 

facing the sensor direction, we investigated these sides 

individually in extraction, as sometimes damage only occurs on 

one side.  

 

4. Damage Detection Based on Texture Analysis 

According to the previous research4), collapsed and survived 

buildings can be differentiated by their homogeneity and 

heterogeneity in the footprint. Thus, the second-order measure 

of the Gray Level Co-occurrence Matrix (GLCM)5) was used in 

this study. From the eight GLCM textures, homogeneity can 

measure the homogenous pixel values, whereas contrast, 

dissimilarity, and variance are suitable to measure 

heterogeneous values. Hence, we choose these four textures for 

damage detection.  

A 9×9-pixel window was applied to the Pi-SAR2-X 

polarization images to calculate the GLCM textures in four 

directions (Horizontal: 0° or 90°, and Diagonal: 45° or 135°). 

 
Fig. 3 Examination of a first-floor collapsed building by a 

profile line over the HH polarization image. 
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Fig. 4 Generation of the footprint region (blue frame) and the 

roof region (yellow frame) for a gable roof building  
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Figure 2 Scattering models from different gable roof buildings 
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Both the single texture and the combination of all the textures 

were evaluated. To investigate the difference in the textures 

between damaged and non-damaged buildings, we selected 42 

buildings as training data, including 18 collapsed buildings (D5) 

and 24 survived buildings (D0) as data in the target area. 

(1) Single Texture Detection  

Figure 5 shows the samples of one collapsed and one 

survived building. The GLCM textures are shown in Fig. 

5(b)-5(e), where the red polygons are the extraction regions of 

collapsed (D5) building, and the yellow polygons are those of 

the survived (D0) building. Collapsed building showed lower 

value in variance (b), contrast (d) and dissimilarity (e), whereas 

higher values in homogeneity (b), within the footprint and roof 

extraction regions. The results for variance, contrast and 

dissimilarity showed the similar pattern because they belong to 

the same statistical texture group. The high homogeneity of the 

collapsed building may be caused by the reflection of debris. 

The corner reflection of debris located near the footprint region.  

 The best threshold values and the most valid textures were 

determined based on the kappa coefficient (κ), comparing with a 

truth data from the field study6). These results are shown in 

Table 1. The textures of HV polarization shows better results 

than other polarizations. Since the HV polarization is a 

cross-polarization, which is more sensitive to surface roughness. 

In addition, the textures in the footprint regions showed better 

results than those in the roof regions. It may be caused due to 

the errors in the roof extraction process with the wrong heights.  

(2) Texture Combinations Detection 

In order to improve the accuracy, we combined two textures 

for the detection. In choosing texture combinations, we used the 

8 textures with the highest kappa coefficient shown in Table 1. 

Then they were evaluated using a multiple linear regression and 

a logistic regression. Both the regressions were used to 

understand the relationship of the textures7). Figure 6 shows the 

comparison of kappa results from each texture combinations. 

From the graph, the best three results are Linear Regression 

from the combination of BC, Logistic Regression from the 

combination of EH, and Logistic Regression from the 

combination of GH. Their kappa coefficients are 0.514, 0.533, 

and 0.483, respectively. Although using all texture combinations 

gave the best result (0.533 in Linear Regression and 0.539 in 

Logistic Regression), the required extraction time was 

significantly longer than using only two textures. Besides, the 

accuracy using all the texture only gave slightly improvement. 

Therefore, we chose the three combinations of two textures with 

highest κ for the damaged building detection. 

With these three combinations, we can compare the results of 

three groups: two different kinds of texture and polarizations; 

two different textures in the same polarization; the same texture 

at different locations (footprint and roof).  

 

5. Validation of Texture Combination Detection 

Since the kappa coefficients using the combinations of two 

textures were higher than those using single texture, the texture 

combinations were applied to the test area. The test area 

included 48 buildings: 21 collapsed and 27 survived ones. Three 

combinations were considered for the evaluation based of the 

accuracy. All of the three combinations extracted 81.0% 

collapsed buildings.  

Survived Collapsed 

K1

Variance

(b)

(a)

(c)

(d)

(e)

 
Fig. 5 Comparison of (a) aerial view and their GLCM textures 

HV polarization for a collapsed and a survived building: (b) 

variance, (c) homogeneity, (d) contrast and (e) dissimilarity. 

 

Table 1 Accuracy assessment of best results in the single 

texture detection 

 Threshold κ Accuracy 

Variance 
HV F 11.876 0.372 0.667 

VV F 11.772 0.413 0.548 

Homogeneity HV 
F 0.391 0.462 0.738 

R 0.389 0.397 0.690 

Contrast HV 
F 6.368 0.355 0.667 

R 5.319 0.446 0.738 

Dissimilarity HV 
F 2.026 0.372 0.667 

R 1.849 0.364 0.690 

 

(3)



 
However, the combination of variance and homogeneity 

showed better precision for classifying collapsed buildings than 

the other combinations, which was 54.8% in user’s accuracy (U. 

A.). This combination also obtained the best result in 

classifying the survived buildings with 48.1% in producer’s 

accuracy (P. A.) and 76.5% in user’s accuracy.  

The result of the best combination is shown in Fig. 7, using 

the combination of variance in VV and homogeneity in HV 

polarization at the footprint area. The confusion matrix is shown 

in Table 2. This combination obtained overall accuracy of 

62.5% in the test area. Although this accuracy was still low 

comparing with the previous studies, it showed the potential to 

overcome the limitation of damage detection using only one 

post-event SAR image. In addition, this combination was 

extracting the textures in only the buildings’ footprints. Thus, 

height information of building was not necessary. Using only 

the buildings’ footprints also could reduce the time in the 

extraction process. 

 

6. Conclusions 

The building damage extraction was attempted using the 

GLCM textures and their combinations from one Pi-SAR-X2 

image acquired after the 2016 Kumamoto earthquake. In this 

study, the new extraction regions pinpointing the essential 

backscatter elements were adopted to investigate the textures of 

residential buildings. The combination of variance and 

homogeneity features showed the best capability to distinguish 

damaged and non-damage buildings. When those indicators 

were applied to a test area, 81% of collapsed buildings could be 

identified successfully.  
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Fig. 7 Detection result (aerial view) from variance VV footprint 

& homogeneity HV footprint combination in validation area 

 

Table 2 Confusion matrix of the classification using the 

combination of variance VV footprint & homogeneity HV 

footprint 

 

Truth data 

 (Yamada et al.6)) 

Collapsed Survived Total U.A. 

P
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 Collapsed 17 14 31 54.8% 

Survived 4 13 17 76.5% 

Total 21 27 48 

 P.A. 81.0% 48.1% 
 

Overall Accuracy 0.625 

Kappa 0.289 

F 0.654 

 

 
Fig. 6 Comparison of Kappa coefficients using different 

GLCM texture combinations, where A is Variance HV 

Footprint, B is Variance VV Footprint, C is Homogeneity HV 

Footprint, D is Homogeneity HV Roof, E is Contrast HV 

Footprint F is Contrast HV Roof, G is Dissimilarity HV 

Footprint, and H is Dissimilarity HV Roof, respectively. 

Three selected combinations for the validation are 

highlighted in red frames. 
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