防災工学

第2回 2019.10.16

千葉大学 工学部 都市環境システムコース 丸山 喜久 (劉ウェン代講)

リモートセンシングとは?

What is Remote Sensing?

"Remote" means far away. Remote sensing means sensing things from a distance. Of our five senses we use three as remote sensors when we:

- a. watch a football game from the stands (sense of sight)
- b. smell freshly baked bread in the oven (sense of smell)
- hearing)

What are our other two senses and why aren't they used "remotely"?

五感(Five Senses)のうちの視覚

視覚, 聴覚, 嗅覚, 味覚, 触覚 eyesight, hearing, smell, taste, touch

遠く離れたところから、対象物に直接 触れずに対象物の大きさ、形、性質 を観測する技術

地球観測衛星は地表面での太陽光 の反射, 地球からの放射を測る

リモートセンシングの プラットフォームとセンサ

光学センサ/SAR

スペースシャトル

航空写真/ 航空機LIDAR

プラットフォームいろいろ

種類	高度	目的・用途
静止衛星	約36,000km	定点地球観測・気象観測
地球観測衛星	400~900km	定期的地球観測
スペースシャトル	200~300km	不定期地球観測・宇宙実験
ゾンデ(気球)	~100km	気象などの調査
ジェット機	~10,000m	広域調査・偵察
プロペラ機	\sim 5,000m	航空写真測量・環境調査
飛行船	\sim 3,000m	環境調査

電磁波の波長と光学センサの 観測波長領域

電磁波:私たちが普段感じている、熱や光

真空中、物質中を電磁場の振動が伝搬することにより電磁エネルギーを運ぶ波

Landsat TM画像のカラー合成例

(R, G, B) **Natural color**

composite (3,5,2)

True color トゥルーカラー (3,2,1)

普段目にする場合と ほぼ同じ色合

ナチュラルカラー (3,4,2)

Principles of Remote

Sensing, ITC

False colour composite

False color フォールスカラー (4,3,2)

植物が多く生えている 箇所を赤色で強調し. 植生の識別が容易.

可視・近赤外・熱赤外画像の比較

神宮球場(人工芝)

2006. 8. 7 pm 13:25

(a) **True color** (RGB=321)

(b) False color (RGB=432)

UltraCamD航空デジタルカメラ

国立競技場 (天然芝)

地表の物質と分光反射率

プーケット島で観測した植物の 分光反射率

Wavelength (nm)

対象物の放射量 対象物の反射率= 白色基準の放射量

地球観測衛星によるリモートセンシングの特徴

(1) 広域性•瞬時性

広い範囲を一度に見渡すことができる.

各地域における土地利用状況、植生分布、市街地の広がり等を知る

上で役に立つ.

観測日:1999年1月30日 Landsat 5/TM

(3) 遠隔性(直接現地に行かなくても、状態を把握可能)

普段行くことが困難な地域の環境変化や、災害地域の被害状況等の把握

地球資源衛星「ふよう1号」(JERS-1)が 観測したアマゾンの熱帯雨林 赤色部分 が熱帯雨林が伐採された跡

地震前:2005.6.26

地震後:2008.6.3

11

2008年5月12日 四川地震前後の映秀 付近のQuickBIrd画像

(2) 反復性・周期性 (同じ地域を繰り返し観測)

地球観測衛星は、地球の回りを繰り返し飛んでいるので、同じ地域 を定期的に観測でき、時間経過に伴う環境変化を知ることができる.

Landsatによるフィリピン・マニラ首都圏の都市域の拡大

(4) 可視光以外の利用(近赤外, 熱赤外, マイクロ波など)

地球観測衛星は、人間の目で確認できない温度などの情報も観測可能.

海洋観測衛星「もも1号」(MOS-1)がとらえ た台風の温度. 寒色が濃いほど低い温度を 、暖色が濃いほど高い温度を示す.

仙台付近のTerraSAR-X強度画像

R: 2011月03月13日 G&B: 2010年10月21日

■事後画像の強度大 <u>瓦礫か新築された建物</u>

■事前画像の強度大 湛水域か流出建物

中解像度衛星光学センサによる災害把握

神戸周辺のLandsat TM 画像

1994年8月17日(地震前)

観測波長:可視3バンド,近・中間赤外3バンド,熱赤外1バンド 地表分解能:30m(熱赤外:120m),回帰周期:16日

13

Landsat 画像から判別した被害分布

インド洋大津波前後のASTER画像とNDVI

False Color NDVI 2002/11/15 2004/12/31 2002/11/15 2004/12/31

LOW

正規化植生指数(NDVI)

Normalized Difference Vegetation Index

$$NDVI = \frac{NIR - R}{NIR + R}$$

NIR: 近赤外バンド R: 赤色バンド

 $-1 \le NDVI \le 1$

1に近いほど<u>植生が強い</u>ことを表す.

K. Kouchi, F. Yamazaki, Characteristics of Tsunami-Affected Areas in Moderate-Resolution Satellite Images, *Transactions on Geoscience and Remote Sensing*, IEEE, Vol. 45, No. 6, 1650-1657, 2007.

HIGH

ASTER画像とSRTM90 DEMの重ね合わせ

- Endeavour(2000.2.11 打上げ)による観測
- 地表の80%の標高データを30m解像度で取得
- 世界データは90m, USデータは30mメッシュ で公開 (ftp://e0mss21u.ecs.nasa.gov/srtm/)
- 垂直方向の精度 16m

東日本大震災前後のASTER熱赤外画像の差分抽出

空間解像度90m

17

ASTER熱赤外画像 (夜間)

- a:事前画像 2010/2/21·2008/1/15
- b:事後画像 2011/3/12
- c:前後差分画像(b-a)

画像撮影日	地上気温の日安(し)		
四 (外) 取 泉) 口	最高	最低	
2008/1/15	5.3	-1.1	
2010/2/21	6.4	-1.6	
2011/3/12	8.8	-1.1	

地震前後ASTER熱赤外画像の部分拡大 相馬・夜間

温度変化

推定湛水域

地震前画像

地震後画像

空撮ビデオ・航空レーザー等の利用

Aerial Video after 1995 Kobe Earthquake by NHK

空撮ビデオ画像のエッジ・色情報を用いた 建物被害自動抽出

Edge Intensity 輪郭の強度

Kobe EQ, 1995

Turkey EQ, 1999

Color

航空機搭載デジタルカメラ DMC

® (Digital Mapping Camera)

Intergraph's Z/I Imaging® DMC

http://www.intergraph.com/dmc/default.asp http://www.ajiko.co.jp/service/space/14_digital_mapping.html

航空レーザー観測による 都市3次元モデルの構築 Digital Surface Model by 東京六本木 LIDAR surveying flights **June 1999** February 20 DSM February 2004

2時期の航空レーザーデータ比較による建物倒壊と斜面崩壊

2016熊本地震 (a) 130.75° E 130.8° E 130.85° E 130.9° E 32.8° N 32.75° N

Moya, L., F. Yamazaki, W. Liu, T. Chiba, Estimation of coseismic displacement in the 2016 Kumamoto earthquake from Lidar data, 6ACEE, 2016.

高解像度衛星による災害把握と現地調査

イラン・バム地震: ASTER画像とQuickBird画像の比較

QB images of a residential area

2003.9.30地震前

2004.1.3地震後

RC建物の外観目視による被害分類 (EMS,1998)とQB画像

European Macroseismic Scale 1998

Damage	Description	
Grade 1	None or negligible to slight damage in non-structural elements and no damage in structural elements	
Grade 2	Moderate to slight damage in non-structural elements and slight damage in structural elements	
Grade 3	Heavy to slight damage in non-structural elements and moderate damage in structural elements	
Grade 4	Very heavy to slight damage in non-structural elements and heavy damage in structural elements	:
Grade 5	Very Heavy structural damage, collapse part of building or total collapse	

マイクロ波リモートセンシングによる災害把握

合成開口レーダ(SAR)による地表面観測

- 航空機や衛星から進行方向に直角に、マイクロ波を地表面に照射し、 観測対象物からの電磁波のはねかりを受信し、その受信信号から地表 面の画像を得る. → 能動型,全天候型 (夜間も可)
- 地表での反射(後方散乱)がマイクロ波の波長, 地表付近の物質の形 状や物性、表面の状態などによって変化するのを観測する.

東北地方太平洋沖地震 津波前後2時期のTerraSAR-Xデータのカラー合成

JST: 2010.10.21, 5:43 JST: 2011.03.13, 5:43 UTC: 2011.10.20 20:43 Incidence angle: 37.32°

UTC: 2011.03.12 20:43 Incidence angle: 37.30°

データ提供:

PASCO Co.

撮影モード: StripMap

撮影偏波:HH 補正レベル:EEC

無被害建物の2時期間の移動量の算定

面積相関法

 $\sum_{i=0}^{M_T-1} \sum_{j=0}^{N_T-1} \left\{ I_{(a,b)}(i,j) - \overline{I} \right\} \left[T(i,j) - \overline{T} \right]$ $\sqrt{\sum_{i=0}^{M_T-1} \sum_{i=0}^{N_T-1} \left\{ I_{(a,b)}(i,j) - \overline{I} \right\}^2} \sqrt{\sum_{i=0}^{M_T-1} \sum_{i=0}^{N_T-1} \left\{ T(i,j) - \overline{T} \right\}^2}$

 $\overline{I} = \frac{1}{M_{\scriptscriptstyle T} N_{\scriptscriptstyle T}} \sum_{i=0}^{M_{\scriptscriptstyle T}-1} \sum_{i=0}^{N_{\scriptscriptstyle T}-1} I_{(a,b)}(i,j) \quad \overline{T} = \frac{1}{M_{\scriptscriptstyle T} N_{\scriptscriptstyle T}} \sum_{i=0}^{M_{\scriptscriptstyle T}-1} \sum_{i=0}^{N_{\scriptscriptstyle T}-1} T(i,j)$

地震後の光学画像

カラー合成SAR画像

101 x 101 pixels

115 x 115 pixels

相関マトリクス 9 10 11 12 13 14 15

東へ 3.75 m, 南へ1.25m (1.25m/pixel)

TerraSAR-X画像を用いた地殻変動の検出

一定地域内、被害なしの建物における位置変動量の平均をこの 地域の地殻変動量と見なす.

□データの外枠

口画像の範囲

国土地理院GPS電子基準点との比較

基準値: 2010.10.23

現地調査 2012.01.13

斜め照射によるSAR後方散乱を利用した原発の状況把握

福島第一原子力発電所の状況

1号機建屋

2号機建屋

3号機建屋

4号機建屋

2011/09/15における原発の状況 東京電力資料より

倒れ込み

レーダー影

福島第一原発のTerraSAR-X画像による被害把握

TSX 2011/03/13 05:43

TSX 2011/09/05 05:43 ── 倒れ込み範囲

■ レーダー影範囲

建物輪郭